In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet...In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet sorghum and Chinese cabbage were planted in purple soils, the quantities of digested biogas slurry were of 57, 157.5, and 34.5 t/hm2, respectively, while the quantities of digested biogas slurry were 70.5, 157.5 and 40.5 t/hm2 in yellow soils. Besides, the digested biogas slurries reached 36 and 27 t/hm2 as per flood irrigation and sprinkling irrigation when Chinese cabbages were planted in yellow soils. The research indicated crop variety, soil type, and irrigation method all have effects on farmland digestion of biogas slurry.展开更多
To study the effects of different storage methods and time on content of nutrients in biogas slurry of straw, two storage methods were carried out on biogas slurry between open storage and airtight storage conditions ...To study the effects of different storage methods and time on content of nutrients in biogas slurry of straw, two storage methods were carried out on biogas slurry between open storage and airtight storage conditions at normal atmospheric temperature. The contents of N, P, K, and organic matter in biogas slurry of straw were determined in different storage times. The results showed that: during the pro-cess of biogas slurry storage, little change occurred in the content of the organic matter while the total content of N, P, K significantly declined; up to 50 days, the total content of N, P, K reduced to nearly 80%-90%. Because the contents of N, P, K in biogas slurry reduced less in airtight storage conditions so that a better re-sult was found on airtight storage methods than open storage methods in fertilizer field of biogas slurry of straw.展开更多
It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial...It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial-temporal evolution of slurry viscosity in flowing water in karst conduit is proposed.First,a time-dependent model for the threshold function of slurry viscosity is established.During the grouting process,the spatial-temporal evolution of slurry viscosity is revealed by tracking the diffusion behavior of the slurry injected at different times.This method is capable of describing the gradual solidification process of the slurry during grouting.Furthermore,a physical model of grouting in a karst conduit is developed.Second,the effectiveness of the SFS method in grouting simulation is verified by the experiment of grouting conduit in flowing water.The SFS method enables real-time monitoring of fluid velocity and pressure during grouting in flowing water and provides a feasible calculation method for revealing the grouting plugging mechanism in complex karst conduits at different engineering scales.In addition,it can be used to guide the design of grouting tests in flowing water,improve cost efficiency,and provide theoretical basis for optimizing grouting design and slurry selection.展开更多
The particle simulation method is used to solve free-surface slurry flow problems that may be encountered in several scientific and engineering fields.The main idea behind the use of the particle simulation method is ...The particle simulation method is used to solve free-surface slurry flow problems that may be encountered in several scientific and engineering fields.The main idea behind the use of the particle simulation method is to treat granular or other materials as an assembly of many particles.Compared with the continuum-mechanics-based numerical methods such as the finite element and finite volume methods,the movement of each particle is accurately described in the particle simulation method so that the free surface of a slurry flow problem can be automatically obtained.The major advantage of using the particle simulation method is that only a simple numerical algorithm is needed to solve the governing equation of a particle simulation system.For the purpose of illustrating how to use the particle simulation method to solve free-surface flow problems,three examples involving slurry flow on three different types of river beds have been considered.The related particle simulation results obtained from these three examples have demonstrated that:1) The particle simulation method is a promising and useful method for solving free-surface flow problems encountered in both the scientific and engineering fields;2) The shape and irregular roughness of a river bed can have a significant effect on the free surface morphologies of slurry flow when it passes through the river bed.展开更多
In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization ...In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
The filling mining method is important in realizing the green mining of mineral resources.Aiming at the problems of land resource occupation,environmental pollution,and rational utilization of coal-based solid wastes ...The filling mining method is important in realizing the green mining of mineral resources.Aiming at the problems of land resource occupation,environmental pollution,and rational utilization of coal-based solid wastes such as coal gangue,fly ash,and desulfurization gypsum,a new paste filling material was developed with coal gangue,fly ash,and desulfurization gypsum as raw materials.The microstructure of the raw materials was analyzed by XRD and SEM.Combined with the Box-Behnken experimental design,the effect of each component on the fluidity of the filling slurry was analyzed through the response surface analysis.The significance of each component on its bleeding and fluidity was determined,and the optimal ratio of the filling slurry was obtained.Experimental results show that the microcosmic morphology of coal gangue,desulfurization gypsum,and gasification slag presents an irregular block and rough particle surface;the microcosmic morphology of fly ash and bottom slag presents first out spherical or quasi spherical particles.Moreover,obvious sintering traces exist on the surface of the bottom slag.The main crystal mineral of coal gangue and fly ash is SiO_(2),the desulfurization gypsum is composed of Ca(SO_(4))(H_(2)O)and Ca(CO_(3))crystal minerals,the gasification slag is composed of carbon and nitrogen compounds,and the main crystal mineral components in the bottom slag sample are SiO_(2) and Al_(x)Si_(y)O_(z) compounds.The order of significance of each key factor on slurry fluidity is as follows:C(desulfurization gypsum)>D(gasification slag and bottom slag 1:1)>A(coal gangue)>B(fly ash).The order of the significance of each key factor on slurry bleeding is as follows:B(fly ash)>C(desulfurization gypsum)>D(gasification slag and bottom slag 1:1)>A(coal gangue).Considering the material preparation,field application,and other conditions,the mass percentage of each factor content of the new paste filling material is as follows:49.5%coal gangue,8.3%fly ash,4.1%desulfurization gypsum,6.2%gasification slag,and 6.2%bottom slag.展开更多
The slurry method is one of the oldest techniques of deposition of aluminide coating on the nickel superalloy, titanium alloys and steel. It is characterized by relatively low costs of its realisation and necessary eq...The slurry method is one of the oldest techniques of deposition of aluminide coating on the nickel superalloy, titanium alloys and steel. It is characterized by relatively low costs of its realisation and necessary equipment. This method en-ables a simple modification of chemical composition of the coating through addition of different powders. The author showed study on the possibility of modification of the Al-Si slurry chemical composition used for aluminide coating deposition by addition of MeCrAlY powder. The slurry was deposited by immersion than the diffusion treatment at 950℃ for two hours was applied. The thickness of obtained coatings was in the range of 30 - 65 μm.展开更多
The rapid discharge of cuttings from the air cushion chamber is crucial for the construction safety and excavation efficiency of the slurry shield.Previous studies have mainly focused on the transport characteristics ...The rapid discharge of cuttings from the air cushion chamber is crucial for the construction safety and excavation efficiency of the slurry shield.Previous studies have mainly focused on the transport characteristics of cuttings in the slurry discharge pipe,while the complete process of cuttings entering the slurry discharge pipe from the air cushion chamber until they are discharged was often overlooked.Based on the CFD-DEM coupling method and combined with actual engineering,this paper established a numerical model that can more completely reflect the cuttings discharge process during slurry shield tunneling,and the effects of the slurry velocity at slurry gate and scouring pipes,inclination angle of slurry discharge pipe,cuttings diameter and shape coefficient were investigated by analyzing the variation in the mass flow rate,mass of discharged cuttings,and discharged ratio.The results revealed that increasing the slurry velocity can promote the discharge of cuttings.To keep the discharged rate at a high level,it is recommended that the slurry velocity at the slurry gate should be greater than 0.15 m/s.Reducing the inclination angle of the discharge pipe is conducive to the rapid discharge of cuttings.Cuttings with large diameter or small shape coefficient are more prone to accumulate in the air cushion chamber and cause clogging risk.The research results not only help to improve engineers'understanding of cuttings discharge in slurry shield,but also provide practical guidance for formulating relevant construction measures.展开更多
基金Supported by International Science&Technology Cooperation Program of China(2013DFA61260)Sub-project of National Science and Technology Planning in Rural Areas during the 12th Five-year Plan(2011BAD36B01)~~
文摘In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet sorghum and Chinese cabbage were planted in purple soils, the quantities of digested biogas slurry were of 57, 157.5, and 34.5 t/hm2, respectively, while the quantities of digested biogas slurry were 70.5, 157.5 and 40.5 t/hm2 in yellow soils. Besides, the digested biogas slurries reached 36 and 27 t/hm2 as per flood irrigation and sprinkling irrigation when Chinese cabbages were planted in yellow soils. The research indicated crop variety, soil type, and irrigation method all have effects on farmland digestion of biogas slurry.
基金Supported by Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period(2012BAJ21B04-04)Shandong Environment Bottlenecks Analysis Project(SDHBPJ-ZB-05)~~
文摘To study the effects of different storage methods and time on content of nutrients in biogas slurry of straw, two storage methods were carried out on biogas slurry between open storage and airtight storage conditions at normal atmospheric temperature. The contents of N, P, K, and organic matter in biogas slurry of straw were determined in different storage times. The results showed that: during the pro-cess of biogas slurry storage, little change occurred in the content of the organic matter while the total content of N, P, K significantly declined; up to 50 days, the total content of N, P, K reduced to nearly 80%-90%. Because the contents of N, P, K in biogas slurry reduced less in airtight storage conditions so that a better re-sult was found on airtight storage methods than open storage methods in fertilizer field of biogas slurry of straw.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52022053 and 51879153)the China National Postdoctoral Program for Innovative Talents(Grant No.BX2021172)。
文摘It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial-temporal evolution of slurry viscosity in flowing water in karst conduit is proposed.First,a time-dependent model for the threshold function of slurry viscosity is established.During the grouting process,the spatial-temporal evolution of slurry viscosity is revealed by tracking the diffusion behavior of the slurry injected at different times.This method is capable of describing the gradual solidification process of the slurry during grouting.Furthermore,a physical model of grouting in a karst conduit is developed.Second,the effectiveness of the SFS method in grouting simulation is verified by the experiment of grouting conduit in flowing water.The SFS method enables real-time monitoring of fluid velocity and pressure during grouting in flowing water and provides a feasible calculation method for revealing the grouting plugging mechanism in complex karst conduits at different engineering scales.In addition,it can be used to guide the design of grouting tests in flowing water,improve cost efficiency,and provide theoretical basis for optimizing grouting design and slurry selection.
基金Project(11272359)supported by the National Natural Science Foundation of China
文摘The particle simulation method is used to solve free-surface slurry flow problems that may be encountered in several scientific and engineering fields.The main idea behind the use of the particle simulation method is to treat granular or other materials as an assembly of many particles.Compared with the continuum-mechanics-based numerical methods such as the finite element and finite volume methods,the movement of each particle is accurately described in the particle simulation method so that the free surface of a slurry flow problem can be automatically obtained.The major advantage of using the particle simulation method is that only a simple numerical algorithm is needed to solve the governing equation of a particle simulation system.For the purpose of illustrating how to use the particle simulation method to solve free-surface flow problems,three examples involving slurry flow on three different types of river beds have been considered.The related particle simulation results obtained from these three examples have demonstrated that:1) The particle simulation method is a promising and useful method for solving free-surface flow problems encountered in both the scientific and engineering fields;2) The shape and irregular roughness of a river bed can have a significant effect on the free surface morphologies of slurry flow when it passes through the river bed.
基金the R&D project, titled " Creating a Marine Clay Matrix with Incineration Bottom Ash (IBA) for Land Reclamation " (Wu et al., 2014), under the Innovation for Environmental Sustainability (IES) Fund from National Environment Agency (NEA) of Singapore (ETO/CF/3/1)
文摘In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金We acknowledge the financial support for this work provided by the National Natural Science Foundation of China(Grant No.51774010)National Key R&D Program of China(Grant No.2019YF1904304).
文摘The filling mining method is important in realizing the green mining of mineral resources.Aiming at the problems of land resource occupation,environmental pollution,and rational utilization of coal-based solid wastes such as coal gangue,fly ash,and desulfurization gypsum,a new paste filling material was developed with coal gangue,fly ash,and desulfurization gypsum as raw materials.The microstructure of the raw materials was analyzed by XRD and SEM.Combined with the Box-Behnken experimental design,the effect of each component on the fluidity of the filling slurry was analyzed through the response surface analysis.The significance of each component on its bleeding and fluidity was determined,and the optimal ratio of the filling slurry was obtained.Experimental results show that the microcosmic morphology of coal gangue,desulfurization gypsum,and gasification slag presents an irregular block and rough particle surface;the microcosmic morphology of fly ash and bottom slag presents first out spherical or quasi spherical particles.Moreover,obvious sintering traces exist on the surface of the bottom slag.The main crystal mineral of coal gangue and fly ash is SiO_(2),the desulfurization gypsum is composed of Ca(SO_(4))(H_(2)O)and Ca(CO_(3))crystal minerals,the gasification slag is composed of carbon and nitrogen compounds,and the main crystal mineral components in the bottom slag sample are SiO_(2) and Al_(x)Si_(y)O_(z) compounds.The order of significance of each key factor on slurry fluidity is as follows:C(desulfurization gypsum)>D(gasification slag and bottom slag 1:1)>A(coal gangue)>B(fly ash).The order of the significance of each key factor on slurry bleeding is as follows:B(fly ash)>C(desulfurization gypsum)>D(gasification slag and bottom slag 1:1)>A(coal gangue).Considering the material preparation,field application,and other conditions,the mass percentage of each factor content of the new paste filling material is as follows:49.5%coal gangue,8.3%fly ash,4.1%desulfurization gypsum,6.2%gasification slag,and 6.2%bottom slag.
文摘The slurry method is one of the oldest techniques of deposition of aluminide coating on the nickel superalloy, titanium alloys and steel. It is characterized by relatively low costs of its realisation and necessary equipment. This method en-ables a simple modification of chemical composition of the coating through addition of different powders. The author showed study on the possibility of modification of the Al-Si slurry chemical composition used for aluminide coating deposition by addition of MeCrAlY powder. The slurry was deposited by immersion than the diffusion treatment at 950℃ for two hours was applied. The thickness of obtained coatings was in the range of 30 - 65 μm.
基金support from the National Natural Science Foundation of China(grant number 52278403)the Natural Science Foundation of Shandong Province(grant number ZR2021ME135).
文摘The rapid discharge of cuttings from the air cushion chamber is crucial for the construction safety and excavation efficiency of the slurry shield.Previous studies have mainly focused on the transport characteristics of cuttings in the slurry discharge pipe,while the complete process of cuttings entering the slurry discharge pipe from the air cushion chamber until they are discharged was often overlooked.Based on the CFD-DEM coupling method and combined with actual engineering,this paper established a numerical model that can more completely reflect the cuttings discharge process during slurry shield tunneling,and the effects of the slurry velocity at slurry gate and scouring pipes,inclination angle of slurry discharge pipe,cuttings diameter and shape coefficient were investigated by analyzing the variation in the mass flow rate,mass of discharged cuttings,and discharged ratio.The results revealed that increasing the slurry velocity can promote the discharge of cuttings.To keep the discharged rate at a high level,it is recommended that the slurry velocity at the slurry gate should be greater than 0.15 m/s.Reducing the inclination angle of the discharge pipe is conducive to the rapid discharge of cuttings.Cuttings with large diameter or small shape coefficient are more prone to accumulate in the air cushion chamber and cause clogging risk.The research results not only help to improve engineers'understanding of cuttings discharge in slurry shield,but also provide practical guidance for formulating relevant construction measures.