期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence on the Solid−Liquid Two-Phase Flow from Cross-Section Area of Slurry Pumps for Deep-Sea Mining
1
作者 WANG Run-kun ZHU Zu-chao +3 位作者 SU Xiang-hui TANG Da-sheng JIN Xing Maciej GRUSZCZYNSKI 《China Ocean Engineering》 SCIE EI CSCD 2022年第3期439-450,共12页
To explore the mechanism of solid-liquid two-phase flow in deep-sea mining pumps,this paper investigates the influences of the impeller cross-section area on the multi-phase flow in the slurry pump.Experimental and nu... To explore the mechanism of solid-liquid two-phase flow in deep-sea mining pumps,this paper investigates the influences of the impeller cross-section area on the multi-phase flow in the slurry pump.Experimental and numerical results are presented for two-phase flow in four impellers with different cross-section areas.They show that the degree of vortex strength and the passing capacity of particles increase as the cross-section area of the impeller.In addition,the correlations between the two-phase flow and cross-section area have been revealed by a mathematical model taking the force of the flow field into account.The simulation results confirm the theoretical analysis,while the experimental pump performances validate the numerical calculation.The influence of the cross-section area on two-phase flow and pump performance could provide theoretical support for the design of high-performance deep-sea mining slurry pumps. 展开更多
关键词 deep-sea mining slurry pump CFD-DEM solid-liquid two-phase flow Rossby number
下载PDF
Numerical simulation and analysis of solid-liquid two-phase threedimensional unsteady flow in centrifugal slurry pump 被引量:16
2
作者 吴波 汪西力 +1 位作者 LIU Hui 徐海良 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3008-3016,共9页
Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of... Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump. 展开更多
关键词 slurry pump solid-liquid two-phase flow unsteady flow 3-D full passage numerical simulation
下载PDF
Influence of Blade Thickness on Transient Flow Characteristics of Centrifugal Slurry Pump with Semi-open Impeller 被引量:4
3
作者 TAO Yi YUAN Shouqi +2 位作者 LIU Jianrui ZHANG Fan TAO Jianping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1209-1217,共9页
As the critical component, the impellers of the slurry pumps usually have blades of a large thickness. The increasing excretion coefficient of the blades affects the flow in the impeller resulting in a relatively high... As the critical component, the impellers of the slurry pumps usually have blades of a large thickness. The increasing excretion coefficient of the blades affects the flow in the impeller resulting in a relatively higher hydraulic loss, which is rarely reported. In order to investigate the influence of blade thickness on the transient flow characteristics of a centrifugal slurry pump with a semi-open impeller, transient numerical simulations were carried out on six impellers, of which the meridional blade thickness from the leading edge to trailing edge varied from 5-10 mm, 5-15 mm, 5-20 mm, 10-10 mm, 10-15 mm, and 10-20 mm, respectively. Then, two of the six impellers, namely cases 4 and 6, were manufactured and experimentally tested for hydraulic performance to verify the simulation results. Results of these tests agreed reasonably well with those of the numerical simulation. The results demonstrate that when blade thickness increases, pressure fluctuations at the outlet of the impeller become severe. Moreover, the standard deviation of the relative velocity in the middle portion of the suction sides of the blades decreases and that at the outlet of the impeller increases. Thus, the amplitude of the impeller head pulsation for each case increases. Meanwhile, the distribution of the time-averaged relative flow angle becomes less uniform and decreases at the outlet of the impeller. Hence, as the impeUer blade thickness increases, the pump head drops rapidly and the maximum efficiency point is offset to a lower flow rate condition. As the thickness of blade trailing edge increases by 10 mm, the head of the pump drops by approximately 5 m, which is approximately 10 % of the original pump head. Futhermore, it is for the first time that the time-averaged relative flow angle is being considered for the analysis of transient flow in centrifugal pump. The presented work could be a useful guideline in engineering practice when designing a centrifugal slurry pump with thick impeller blades. 展开更多
关键词 centrifugal slurry pump blade thickness transient flow characteristics time-averaged relative flow angle semi-openimpeller
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部