The small Hankel operators on weighted Bergman space of bounded symmetric domains Omega in C-n with symbols in L-2(Omega,dV(lambda)) are studied. Characterizations for the boundedness, compactness of the small Hankel ...The small Hankel operators on weighted Bergman space of bounded symmetric domains Omega in C-n with symbols in L-2(Omega,dV(lambda)) are studied. Characterizations for the boundedness, compactness of the small Hankel operators h(Phi) are presented in terms of a certain integral transform of the symbol Phi.展开更多
In this paper,we discuss some algebraic properties of Toeplitz operators and small Hankel operators with radial and quasihomogeneous symbols on the harmonic Bergman space of the unit disk in the complex plane C.We sol...In this paper,we discuss some algebraic properties of Toeplitz operators and small Hankel operators with radial and quasihomogeneous symbols on the harmonic Bergman space of the unit disk in the complex plane C.We solve the product problem of quasihomogeneous Toeplitz operator and quasihomogeneous small Hankel operator.Meanwhile,we characterize the commutativity of quasihomogeneous Toeplitz operator and quasihomogeneous small Hankel operator.展开更多
文摘The small Hankel operators on weighted Bergman space of bounded symmetric domains Omega in C-n with symbols in L-2(Omega,dV(lambda)) are studied. Characterizations for the boundedness, compactness of the small Hankel operators h(Phi) are presented in terms of a certain integral transform of the symbol Phi.
基金Supported by National Natural Science Foundation of China(Grant No.11271059)
文摘In this paper,we discuss some algebraic properties of Toeplitz operators and small Hankel operators with radial and quasihomogeneous symbols on the harmonic Bergman space of the unit disk in the complex plane C.We solve the product problem of quasihomogeneous Toeplitz operator and quasihomogeneous small Hankel operator.Meanwhile,we characterize the commutativity of quasihomogeneous Toeplitz operator and quasihomogeneous small Hankel operator.