This paper discusses the design and implementation of a low cost multi-sensor integrated attitude determination system for small unmanned aerial vehicles( UAVs),which uses strapdown inertial navigation system( SINS) b...This paper discusses the design and implementation of a low cost multi-sensor integrated attitude determination system for small unmanned aerial vehicles( UAVs),which uses strapdown inertial navigation system( SINS) based on micro electromechanical system( MEMS) inertial sensors,commercial GPS receiver,and 3-axis magnetometer.MEMS-SINS initial attitude determination cannot be well performed for the reason that the MEMS inertial sensors biases are time-varying and poor repeatability,therefore in this paper the magnetometer and inclinometer are used to assist the MEMS-SINS initial attitude determination and MEMS inertial sensors field calibration.Furthermore,the attitude determination algorithms are presented to estimate the full attitude during GPS signal outage and non-accelerating situation.Additionally,the attitude information estimation results are compared with the reference of the non-magnetic marble platform and 3-axis turntable.Then the attitude estimation precision satisfies the requirement of attitude measurement for small UAVs during GPS signal outage and availability.Finally,the small UAV autonomous flight test results show that the low cost and real-time attitude determination system can yield continuous,reliable and effective attitude information for small UAVs.展开更多
A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and...A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and magnetometer are introduced to construct an error equation with the gyros,thus the drifting characteristics of gyroscope can be compensated by solving the error equation utilized by the gradient descent algorithm.Performance of the presented algorithm is evaluated using a self-proposed micro-electro-mechanical system(MEMS)based attitude heading reference system which is mounted on a tri-axis turntable.The on-ground,turntable and flight experiments indicate that the estimation attitude has a good accuracy.Also,the presented system is compared with an open-source flight control system which runs extended Kalman filter(EKF),and the results show that the attitude control system using the gradient descent method can estimate the attitudes for UAV effectively.展开更多
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observati...This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments.展开更多
基金Sponsored by the China Postdoctoral Science Foundation(Grant No.2013M540857)the Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-14-019A1)
文摘This paper discusses the design and implementation of a low cost multi-sensor integrated attitude determination system for small unmanned aerial vehicles( UAVs),which uses strapdown inertial navigation system( SINS) based on micro electromechanical system( MEMS) inertial sensors,commercial GPS receiver,and 3-axis magnetometer.MEMS-SINS initial attitude determination cannot be well performed for the reason that the MEMS inertial sensors biases are time-varying and poor repeatability,therefore in this paper the magnetometer and inclinometer are used to assist the MEMS-SINS initial attitude determination and MEMS inertial sensors field calibration.Furthermore,the attitude determination algorithms are presented to estimate the full attitude during GPS signal outage and non-accelerating situation.Additionally,the attitude information estimation results are compared with the reference of the non-magnetic marble platform and 3-axis turntable.Then the attitude estimation precision satisfies the requirement of attitude measurement for small UAVs during GPS signal outage and availability.Finally,the small UAV autonomous flight test results show that the low cost and real-time attitude determination system can yield continuous,reliable and effective attitude information for small UAVs.
基金supported by the Fundamental Research Funds for the Central Universities(No.56XAA17075)
文摘A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and magnetometer are introduced to construct an error equation with the gyros,thus the drifting characteristics of gyroscope can be compensated by solving the error equation utilized by the gradient descent algorithm.Performance of the presented algorithm is evaluated using a self-proposed micro-electro-mechanical system(MEMS)based attitude heading reference system which is mounted on a tri-axis turntable.The on-ground,turntable and flight experiments indicate that the estimation attitude has a good accuracy.Also,the presented system is compared with an open-source flight control system which runs extended Kalman filter(EKF),and the results show that the attitude control system using the gradient descent method can estimate the attitudes for UAV effectively.
基金supported by National High Technology Research Development Program of China (863 Program) (No.2011AA040202)National Science Foundation of China (No.51005008)
文摘This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments.