Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mi...Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.展开更多
With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the ope...With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.展开更多
In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position beco...In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.展开更多
In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion ...In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement.展开更多
In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted...In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV).展开更多
In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convo...In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images.展开更多
Bridges are an important part of railway infrastructure and need regular inspection and maintenance.Using unmanned aerial vehicle(UAV)technology to inspect railway infrastructure is an active research issue.However,du...Bridges are an important part of railway infrastructure and need regular inspection and maintenance.Using unmanned aerial vehicle(UAV)technology to inspect railway infrastructure is an active research issue.However,due to the large size of UAV images,flight distance,and height changes,the object scale changes dramatically.At the same time,the elements of interest in railway bridges,such as bolts and corrosion,are small and dense objects,and the sample data set is seriously unbalanced,posing great challenges to the accurate detection of defects.In this paper,an adaptive cropping shallow attention network(ACSANet)is proposed,which includes an adaptive cropping strategy for large UAV images and a shallow attention network for small object detection in limited samples.To enhance the accuracy and generalization of the model,the shallow attention network model integrates a coordinate attention(CA)mechanism module and an alpha intersection over union(α-IOU)loss function,and then carries out defect detection on the bolts,steel surfaces,and railings of railway bridges.The test results show that the ACSANet model outperforms the YOLOv5s model using adaptive cropping strategy in terms of the total mAP(an evaluation index)and missing bolt mAP by 5%and 30%,respectively.Also,compared with the YOLOv5s model that adopts the common cropping strategy,the total mAP and missing bolt mAP are improved by 10%and 60%,respectively.Compared with the YOLOv5s model without any cropping strategy,the total mAP and missing bolt mAP are improved by 40%and 67%,respectively.展开更多
针对无人机和遥感测绘(unmanned air vehicle for remote sensing,UAV-RS)相关专业在实际教学中存在的问题,如设备资源和实验时间无法满足学生需求,野外作业中无人机的安全难以管控,天气和环境条件要求苛刻等,以无人机遥感测绘外业为仿...针对无人机和遥感测绘(unmanned air vehicle for remote sensing,UAV-RS)相关专业在实际教学中存在的问题,如设备资源和实验时间无法满足学生需求,野外作业中无人机的安全难以管控,天气和环境条件要求苛刻等,以无人机遥感测绘外业为仿真对象,设计开发了虚拟仿真系统,改革实训教学模式。仿真系统确立了无人机飞行操控、地面场景模拟和遥感图像获取3个模块,引导学生自主完成无人机遥感测绘外业过程。评估实验中经过仿真系统学习的学生(实验组)的项目完成率为:初级90%、中级80%、高级75%,均明显高于对照组。表明基于仿真系统的教学模式可提升UAV-RS的外业教学效果,提高复杂项目完成率,并能够激发学生自主学习的积极性。展开更多
A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and...A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and magnetometer are introduced to construct an error equation with the gyros,thus the drifting characteristics of gyroscope can be compensated by solving the error equation utilized by the gradient descent algorithm.Performance of the presented algorithm is evaluated using a self-proposed micro-electro-mechanical system(MEMS)based attitude heading reference system which is mounted on a tri-axis turntable.The on-ground,turntable and flight experiments indicate that the estimation attitude has a good accuracy.Also,the presented system is compared with an open-source flight control system which runs extended Kalman filter(EKF),and the results show that the attitude control system using the gradient descent method can estimate the attitudes for UAV effectively.展开更多
Multiple unmanned air/ground vehicles heterogeneous cooperation is a novel and challenging filed.Heterogeneous cooperative techniques can widen the application fields of unmanned air or ground vehicles,and enhance the...Multiple unmanned air/ground vehicles heterogeneous cooperation is a novel and challenging filed.Heterogeneous cooperative techniques can widen the application fields of unmanned air or ground vehicles,and enhance the effectiveness of implementing detection,search and rescue tasks.This paper mainly focused on the key issues in multiple unmanned air/ground vehicles heterogeneous cooperation,including heterogeneous flocking,formation control,formation stability,network control,and actual applications.The main problems and future directions in this field were also analyzed in detail.These innovative technologies can significantly enhance the effectiveness of implementing complicated tasks,which definitely provide a series of novel breakthroughs for the intelligence,integration and advancement of future robot systems.展开更多
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observati...This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments.展开更多
从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(conce...从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(concentration-based attention module)注意力机制改进卷积模块,解决注意力权重参数在感受野特征中共享问题的同时,在通道和空间维度加上注意力权重,增强特征提取能力;通过引入大型可分离卷积注意力思想,改造空间金字塔池化层,增加不同层级特征间的信息交融;优化颈部结构,增加具有丰富小目标语义信息的特征层;使用inner-IoU损失函数的思想改进MPDIoU(minimum point distance based IoU)函数,以innerMPDIoU代替原损失函数,提升对困难样本的学习能力。实验结果表明,改进后的YOLOv8s模型在VisDrone数据集上mAP、P、R分别提升了16.1%、9.3%、14.9%,性能超过YOLOv8m,可以有效应用于无人机平台上的目标检测任务。展开更多
基金supportes by the National Nature Science Foundation o f China (71771215,62122093)。
文摘Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.
基金This work is supported by the Scientific Research Project of Tianjin Education Commission(No.2019KJ128).
文摘With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.
基金National Key R&D Program of China(Grant No.2021YFA1000402)National Natural Science Foundation of China(Grant No.72071159)to provide fund for conducting experiments。
文摘In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement.
基金supported by the National Natural Science Foundation of China (No.U1833203),the National Natural Science Foundation of China (No.62301036)the Aviation Science Foundation (No.2020Z019055001)China Postdoctoral Science Foundation Funded Project (No.2022M720446)。
文摘In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV).
基金National Defense Pre-research Fund Project(No.KMGY318002531)。
文摘In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images.
基金supported by the National Natural Science Foundation of China(No.61833002).
文摘Bridges are an important part of railway infrastructure and need regular inspection and maintenance.Using unmanned aerial vehicle(UAV)technology to inspect railway infrastructure is an active research issue.However,due to the large size of UAV images,flight distance,and height changes,the object scale changes dramatically.At the same time,the elements of interest in railway bridges,such as bolts and corrosion,are small and dense objects,and the sample data set is seriously unbalanced,posing great challenges to the accurate detection of defects.In this paper,an adaptive cropping shallow attention network(ACSANet)is proposed,which includes an adaptive cropping strategy for large UAV images and a shallow attention network for small object detection in limited samples.To enhance the accuracy and generalization of the model,the shallow attention network model integrates a coordinate attention(CA)mechanism module and an alpha intersection over union(α-IOU)loss function,and then carries out defect detection on the bolts,steel surfaces,and railings of railway bridges.The test results show that the ACSANet model outperforms the YOLOv5s model using adaptive cropping strategy in terms of the total mAP(an evaluation index)and missing bolt mAP by 5%and 30%,respectively.Also,compared with the YOLOv5s model that adopts the common cropping strategy,the total mAP and missing bolt mAP are improved by 10%and 60%,respectively.Compared with the YOLOv5s model without any cropping strategy,the total mAP and missing bolt mAP are improved by 40%and 67%,respectively.
文摘针对无人机和遥感测绘(unmanned air vehicle for remote sensing,UAV-RS)相关专业在实际教学中存在的问题,如设备资源和实验时间无法满足学生需求,野外作业中无人机的安全难以管控,天气和环境条件要求苛刻等,以无人机遥感测绘外业为仿真对象,设计开发了虚拟仿真系统,改革实训教学模式。仿真系统确立了无人机飞行操控、地面场景模拟和遥感图像获取3个模块,引导学生自主完成无人机遥感测绘外业过程。评估实验中经过仿真系统学习的学生(实验组)的项目完成率为:初级90%、中级80%、高级75%,均明显高于对照组。表明基于仿真系统的教学模式可提升UAV-RS的外业教学效果,提高复杂项目完成率,并能够激发学生自主学习的积极性。
基金supported by the Fundamental Research Funds for the Central Universities(No.56XAA17075)
文摘A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and magnetometer are introduced to construct an error equation with the gyros,thus the drifting characteristics of gyroscope can be compensated by solving the error equation utilized by the gradient descent algorithm.Performance of the presented algorithm is evaluated using a self-proposed micro-electro-mechanical system(MEMS)based attitude heading reference system which is mounted on a tri-axis turntable.The on-ground,turntable and flight experiments indicate that the estimation attitude has a good accuracy.Also,the presented system is compared with an open-source flight control system which runs extended Kalman filter(EKF),and the results show that the attitude control system using the gradient descent method can estimate the attitudes for UAV effectively.
基金supported by the National Natural Science Foundation of China (Grant Nos.60975072 and 60604009)the Program for New Century Excellent Talents in University of China (Grant No.NCET-10-0021)the Beijing NOVA Program Foundation (Grant No.2007A017)
文摘Multiple unmanned air/ground vehicles heterogeneous cooperation is a novel and challenging filed.Heterogeneous cooperative techniques can widen the application fields of unmanned air or ground vehicles,and enhance the effectiveness of implementing detection,search and rescue tasks.This paper mainly focused on the key issues in multiple unmanned air/ground vehicles heterogeneous cooperation,including heterogeneous flocking,formation control,formation stability,network control,and actual applications.The main problems and future directions in this field were also analyzed in detail.These innovative technologies can significantly enhance the effectiveness of implementing complicated tasks,which definitely provide a series of novel breakthroughs for the intelligence,integration and advancement of future robot systems.
基金supported by National High Technology Research Development Program of China (863 Program) (No.2011AA040202)National Science Foundation of China (No.51005008)
文摘This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments.
文摘从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(concentration-based attention module)注意力机制改进卷积模块,解决注意力权重参数在感受野特征中共享问题的同时,在通道和空间维度加上注意力权重,增强特征提取能力;通过引入大型可分离卷积注意力思想,改造空间金字塔池化层,增加不同层级特征间的信息交融;优化颈部结构,增加具有丰富小目标语义信息的特征层;使用inner-IoU损失函数的思想改进MPDIoU(minimum point distance based IoU)函数,以innerMPDIoU代替原损失函数,提升对困难样本的学习能力。实验结果表明,改进后的YOLOv8s模型在VisDrone数据集上mAP、P、R分别提升了16.1%、9.3%、14.9%,性能超过YOLOv8m,可以有效应用于无人机平台上的目标检测任务。