In this paper, the X-ray nondestructive test method of small defects in precision weldments with complex structure was presented. To resolve the difficulty of defect segmentation in variable grey image, the image proc...In this paper, the X-ray nondestructive test method of small defects in precision weldments with complex structure was presented. To resolve the difficulty of defect segmentation in variable grey image, the image processing based on Visual Basic programming method was adopted. The methods of automatic contrast and partial grey stretch were used to enhance the X-ray detection image which has relatively low contrast, then automatic threshold method was carried out to segment the two high intensity zones, and weld zones which contain the small defects was extracted. Smoothing and sharpen processing were proceeded on the extracted weld zones, and small defects in X-ray detection image of weldments with complex structure were segmented by using the method of background subtraction in the end. The effects of raster were eliminated, and because of that the image processing was only proceeded on the extracted weld zones, the calculated speed using the above provided algorithm was improved.展开更多
A simulation method for microscopic creep damage at grain boundaries in the fine-grain heat-affected zone of low-alloy steel welds involving high energy piping was proposed on the basis of the combination of elastic-c...A simulation method for microscopic creep damage at grain boundaries in the fine-grain heat-affected zone of low-alloy steel welds involving high energy piping was proposed on the basis of the combination of elastic-creep FEM (finite element method) analysis and random fracture resistance modeling of the materials. The procedure to determine the initiation and growth-driving forces of small defects were briefly described. Then, a simulation procedure combining the stress distribution from elastic-creep FEM and the random fracture resistance model was proposed, and Ms procedure was applied to the simulation of the microscopic damage progress in a welded joint model test and in actual power piping. The results in terms of the simulated number density of small defects throughout the wall thickness were in good agreement with the observed results.展开更多
The fatigue life prediction of high strength steel SUS 630 (H900) under high cycle loading is conducted with consideration of a characteristic fatigue length of material. Based on the WShler curve of smooth material...The fatigue life prediction of high strength steel SUS 630 (H900) under high cycle loading is conducted with consideration of a characteristic fatigue length of material. Based on the WShler curve of smooth materials, a modified method for fatigue life prediction is approached. The characteristic fatigue length of material under cyclic loading is associated with the polycrystalline material. Rather than the stress at a point, the average stress within the characteristic fatigue length is implemented for the fatigue life prediction. The method can be applied to both the smooth and the defected material. The fatigue life prediction is also verified experimentally by specimens with various small circular holes. Through the comparison, it is found that the method can be adopted to predict the fatigue lives with different size effects.展开更多
文摘In this paper, the X-ray nondestructive test method of small defects in precision weldments with complex structure was presented. To resolve the difficulty of defect segmentation in variable grey image, the image processing based on Visual Basic programming method was adopted. The methods of automatic contrast and partial grey stretch were used to enhance the X-ray detection image which has relatively low contrast, then automatic threshold method was carried out to segment the two high intensity zones, and weld zones which contain the small defects was extracted. Smoothing and sharpen processing were proceeded on the extracted weld zones, and small defects in X-ray detection image of weldments with complex structure were segmented by using the method of background subtraction in the end. The effects of raster were eliminated, and because of that the image processing was only proceeded on the extracted weld zones, the calculated speed using the above provided algorithm was improved.
文摘A simulation method for microscopic creep damage at grain boundaries in the fine-grain heat-affected zone of low-alloy steel welds involving high energy piping was proposed on the basis of the combination of elastic-creep FEM (finite element method) analysis and random fracture resistance modeling of the materials. The procedure to determine the initiation and growth-driving forces of small defects were briefly described. Then, a simulation procedure combining the stress distribution from elastic-creep FEM and the random fracture resistance model was proposed, and Ms procedure was applied to the simulation of the microscopic damage progress in a welded joint model test and in actual power piping. The results in terms of the simulated number density of small defects throughout the wall thickness were in good agreement with the observed results.
基金supported by the National Natural Science Foundation of China(Nos.10772116,10772115 and 10932007)by the JST program ‘Development of Technology for Promoting Food Quality Project’
文摘The fatigue life prediction of high strength steel SUS 630 (H900) under high cycle loading is conducted with consideration of a characteristic fatigue length of material. Based on the WShler curve of smooth materials, a modified method for fatigue life prediction is approached. The characteristic fatigue length of material under cyclic loading is associated with the polycrystalline material. Rather than the stress at a point, the average stress within the characteristic fatigue length is implemented for the fatigue life prediction. The method can be applied to both the smooth and the defected material. The fatigue life prediction is also verified experimentally by specimens with various small circular holes. Through the comparison, it is found that the method can be adopted to predict the fatigue lives with different size effects.