Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by c...We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by comparing vegetation maps created by analysing aerial photographs taken by a UAV and an aircraft (manned flight). The aerial photography using UAV was conducted in the Niida River estuary (the secondary river flowing into Minamisoma City in Fukushima Prefecture, Japan). The photography period was in August 2013. We analysed the aerial photographs using ArcGis 9 (Esri Japan Corporation, Tokyo, Japan). The aerial photographs of the main plant communities (Phragmites australis,?Typha domingensis, and?Miscanthus sacchariflorus) taken by the UAV could clearly discriminate each plant community at the 1/50 scale. Moreover, it could clearly discriminate the shape of a plant at the 1/10 scale. We compared the vegetation maps by analysing the aerial photos taken by a UAV (2013 shooting) and an aircraft (2011 shooting). As a result, the vegetation map created by the UAV method could clearly discriminate community distributions. We conclude that vegetation surveys using UAV are possible and are capable of a highly precise community division in places where field reconnaissance is difficult. The UAV method is effective and will contribute to the improvement of research methods in the future;this method may reduce research costs associated with a reduction in field survey days and man-power.展开更多
Deploying the small Unmanned Aerial System (sUAS) for data collection of high-resolution images is a big potential in determining crop physiological parameters. The advantage of using sUAS technology is the ability to...Deploying the small Unmanned Aerial System (sUAS) for data collection of high-resolution images is a big potential in determining crop physiological parameters. The advantage of using sUAS technology is the ability to acquire a high-resolution orthophoto and a 3D Model which is highly suitable for plant height monitoring. Plant height estimation has a big impact in the growth and development of wheat because it is essential for obtaining biomass, which is a factor for higher crop yield. Plant height is an indicator of high yield estimation and it correlates to biomass, nitrogen content, and other plant growth parameters. The study is aimed to determine an accurate height of wheat using the sUAS generated Digital Surface Model (DSM). A high-resolution imagery between 1.0 - 1.2 cm/pixel was obtained from a 35 m altitude with area coverage of 1.01 hectares. The DSM and orthophoto were generated from the sUAS, and the computed wheat heights were derived from the difference of Digital Elevation Model (DEM) and DSM data. Field measurement using steel tape was done for ground truth. The sUAS-based wheat height data were evaluated using the ground truth of 66 wheat-rows by applying correlation and linear regression analysis. Datasets were collected from three different flight campaigns (March 2018-May 2018). The sUAS-based wheat height data were significantly correlated, obtaining the result of R2 = 0.988, R2 = 0.996 and R2 = 0.944 for the month of March, April and May 2018 respectively. The significance of linear regression results was also validated by computing for the p-value. The p-value results were 0.00064, 0.0000824 and 0.0058 respectively. The main concern is the lodging of winter wheat, especially during the month of April which affects the recording of the plant’s height. Because some of the wheat plants are now lying on the ground, so measurements are done vertically. Nonetheless, the results showed that sUAS technology is highly suitable for many agricultural applications.展开更多
This paper is the first in a two-part series that introduces an easy-to-implement central command architecture for high-order autonomous unmanned aerial systems. This paper discusses the development and the second pap...This paper is the first in a two-part series that introduces an easy-to-implement central command architecture for high-order autonomous unmanned aerial systems. This paper discusses the development and the second paper presents the flight test results. As shown in this paper, the central command architecture consists of a central command block, an autonomous planning block, and an autonomous flight controls block. The central command block includes a staging process that converts an objective into tasks independent of the vehicle (agent). The autonomous planning block contains a non-iterative sequence of algorithms that govern routing, vehicle assignment, and deconfliction. The autonomous flight controls block employs modern controls principles, dividing the control input into a guidance part and a regulation part. A novel feature of high-order central command, as this paper shows, is the elimination of operator-directed vehicle tasking and the manner in which deconfliction is treated. A detailed example illustrates different features of the architecture.展开更多
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. T...A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.展开更多
In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convo...In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images.展开更多
Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Un...Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Unmanned Vehicles(UVs)for anti-submarine attacks.This study’s contribution is the early detection of a submarine assault employing hybrid environment UVs that are controlled using swarm optimization and secure the information in between UVs using a decentralized cybersecurity strategy.The Dragonfly Algorithm is used for the orientation and clustering of the UVs in the optimization approach,and the Re-fragmentation strategy is used in the Network layer of the TCP/IP protocol as a cybersecurity solution.The research’s noteworthy findings demonstrate UVs’logistical capability to promptly detect the target and address the problem while securely keeping the drone’s geographical information.The results suggest that detecting the submarine early increases the likelihood of averting a collision.The dragonfly strategy of sensing the position of the submersible and aggregating around it demonstrates the reliability of swarm intelligence in increasing access efficiency.Securing communication between Unmanned Aerial Vehicles(UAVs)improves the level of secrecy necessary for the task.The swarm navigation is based on a peer-to-peer system,which allows each UAV to access information from its peers.This,in turn,helps the UAVs to determine the best route to take and to avoid collisions with other UAVs.The dragonfly strategy also increases the speed of the mission by minimizing the time spent finding the target.展开更多
In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted...In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV).展开更多
In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion ...In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement.展开更多
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observati...This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments.展开更多
A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and...A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and magnetometer are introduced to construct an error equation with the gyros,thus the drifting characteristics of gyroscope can be compensated by solving the error equation utilized by the gradient descent algorithm.Performance of the presented algorithm is evaluated using a self-proposed micro-electro-mechanical system(MEMS)based attitude heading reference system which is mounted on a tri-axis turntable.The on-ground,turntable and flight experiments indicate that the estimation attitude has a good accuracy.Also,the presented system is compared with an open-source flight control system which runs extended Kalman filter(EKF),and the results show that the attitude control system using the gradient descent method can estimate the attitudes for UAV effectively.展开更多
This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of ...This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.展开更多
文摘Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
文摘We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by comparing vegetation maps created by analysing aerial photographs taken by a UAV and an aircraft (manned flight). The aerial photography using UAV was conducted in the Niida River estuary (the secondary river flowing into Minamisoma City in Fukushima Prefecture, Japan). The photography period was in August 2013. We analysed the aerial photographs using ArcGis 9 (Esri Japan Corporation, Tokyo, Japan). The aerial photographs of the main plant communities (Phragmites australis,?Typha domingensis, and?Miscanthus sacchariflorus) taken by the UAV could clearly discriminate each plant community at the 1/50 scale. Moreover, it could clearly discriminate the shape of a plant at the 1/10 scale. We compared the vegetation maps by analysing the aerial photos taken by a UAV (2013 shooting) and an aircraft (2011 shooting). As a result, the vegetation map created by the UAV method could clearly discriminate community distributions. We conclude that vegetation surveys using UAV are possible and are capable of a highly precise community division in places where field reconnaissance is difficult. The UAV method is effective and will contribute to the improvement of research methods in the future;this method may reduce research costs associated with a reduction in field survey days and man-power.
文摘Deploying the small Unmanned Aerial System (sUAS) for data collection of high-resolution images is a big potential in determining crop physiological parameters. The advantage of using sUAS technology is the ability to acquire a high-resolution orthophoto and a 3D Model which is highly suitable for plant height monitoring. Plant height estimation has a big impact in the growth and development of wheat because it is essential for obtaining biomass, which is a factor for higher crop yield. Plant height is an indicator of high yield estimation and it correlates to biomass, nitrogen content, and other plant growth parameters. The study is aimed to determine an accurate height of wheat using the sUAS generated Digital Surface Model (DSM). A high-resolution imagery between 1.0 - 1.2 cm/pixel was obtained from a 35 m altitude with area coverage of 1.01 hectares. The DSM and orthophoto were generated from the sUAS, and the computed wheat heights were derived from the difference of Digital Elevation Model (DEM) and DSM data. Field measurement using steel tape was done for ground truth. The sUAS-based wheat height data were evaluated using the ground truth of 66 wheat-rows by applying correlation and linear regression analysis. Datasets were collected from three different flight campaigns (March 2018-May 2018). The sUAS-based wheat height data were significantly correlated, obtaining the result of R2 = 0.988, R2 = 0.996 and R2 = 0.944 for the month of March, April and May 2018 respectively. The significance of linear regression results was also validated by computing for the p-value. The p-value results were 0.00064, 0.0000824 and 0.0058 respectively. The main concern is the lodging of winter wheat, especially during the month of April which affects the recording of the plant’s height. Because some of the wheat plants are now lying on the ground, so measurements are done vertically. Nonetheless, the results showed that sUAS technology is highly suitable for many agricultural applications.
文摘This paper is the first in a two-part series that introduces an easy-to-implement central command architecture for high-order autonomous unmanned aerial systems. This paper discusses the development and the second paper presents the flight test results. As shown in this paper, the central command architecture consists of a central command block, an autonomous planning block, and an autonomous flight controls block. The central command block includes a staging process that converts an objective into tasks independent of the vehicle (agent). The autonomous planning block contains a non-iterative sequence of algorithms that govern routing, vehicle assignment, and deconfliction. The autonomous flight controls block employs modern controls principles, dividing the control input into a guidance part and a regulation part. A novel feature of high-order central command, as this paper shows, is the elimination of operator-directed vehicle tasking and the manner in which deconfliction is treated. A detailed example illustrates different features of the architecture.
文摘A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.
基金National Defense Pre-research Fund Project(No.KMGY318002531)。
文摘In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images.
基金This work was funded by the research center of the Future University in Egypt,in 2023.
文摘Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Unmanned Vehicles(UVs)for anti-submarine attacks.This study’s contribution is the early detection of a submarine assault employing hybrid environment UVs that are controlled using swarm optimization and secure the information in between UVs using a decentralized cybersecurity strategy.The Dragonfly Algorithm is used for the orientation and clustering of the UVs in the optimization approach,and the Re-fragmentation strategy is used in the Network layer of the TCP/IP protocol as a cybersecurity solution.The research’s noteworthy findings demonstrate UVs’logistical capability to promptly detect the target and address the problem while securely keeping the drone’s geographical information.The results suggest that detecting the submarine early increases the likelihood of averting a collision.The dragonfly strategy of sensing the position of the submersible and aggregating around it demonstrates the reliability of swarm intelligence in increasing access efficiency.Securing communication between Unmanned Aerial Vehicles(UAVs)improves the level of secrecy necessary for the task.The swarm navigation is based on a peer-to-peer system,which allows each UAV to access information from its peers.This,in turn,helps the UAVs to determine the best route to take and to avoid collisions with other UAVs.The dragonfly strategy also increases the speed of the mission by minimizing the time spent finding the target.
基金supported by the National Natural Science Foundation of China (No.U1833203),the National Natural Science Foundation of China (No.62301036)the Aviation Science Foundation (No.2020Z019055001)China Postdoctoral Science Foundation Funded Project (No.2022M720446)。
文摘In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV).
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement.
基金supported by National High Technology Research Development Program of China (863 Program) (No.2011AA040202)National Science Foundation of China (No.51005008)
文摘This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments.
基金supported by the Fundamental Research Funds for the Central Universities(No.56XAA17075)
文摘A gradient descent algorithm with adjustable parameter for attitude estimation is developed,aiming at the attitude measurement for small unmanned aerial vehicle(UAV)in real-time flight conditions.The accelerometer and magnetometer are introduced to construct an error equation with the gyros,thus the drifting characteristics of gyroscope can be compensated by solving the error equation utilized by the gradient descent algorithm.Performance of the presented algorithm is evaluated using a self-proposed micro-electro-mechanical system(MEMS)based attitude heading reference system which is mounted on a tri-axis turntable.The on-ground,turntable and flight experiments indicate that the estimation attitude has a good accuracy.Also,the presented system is compared with an open-source flight control system which runs extended Kalman filter(EKF),and the results show that the attitude control system using the gradient descent method can estimate the attitudes for UAV effectively.
文摘This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.