期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
改进YOLOv8n的选通图像目标检测算法
1
作者 田青 王颖 +1 位作者 张正 羊强 《计算机工程与应用》 北大核心 2025年第2期124-134,共11页
激光选通成像技术在复杂环境下表现出色,但选通图像为灰度图像无法提供颜色信息,并且对比度较低,所以在进行小目标和遮挡目标检测时更加困难。为解决以上问题提出了一种改进YOLOv8n的选通图像目标检测算法。在特征提取的主干网络部分,... 激光选通成像技术在复杂环境下表现出色,但选通图像为灰度图像无法提供颜色信息,并且对比度较低,所以在进行小目标和遮挡目标检测时更加困难。为解决以上问题提出了一种改进YOLOv8n的选通图像目标检测算法。在特征提取的主干网络部分,使用大核卷积C2f-DSF更有效地捕获输入数据的全局信息。添加了多头注意力检测头Detect-SEAM模块,增强了特征提取和目标识别的能力。为了获取不同感受野的上下文信息,增强特征提取能力,使用了SPPF-M模块。采用上采样算子Dysample,减少特征信息的损失,从而提高小目标的检测精度。改进的YOLOv8n算法在选通图像数据集上mAP@0.5提高了2.4个百分点,mAP@0.5:0.95提高了1.8个百分点。为了验证改进的YOLOv8n算法的泛化性,选取KITTI数据集实验,相比于YOLOv8n算法改进YOLOv8n的mAP@0.5提高了4.3个百分点,mAP@0.5:0.95提高了3.5个百分点。 展开更多
关键词 选通图像 YOLOv8n 遮挡目标 小目标 大卷积核
下载PDF
基于EE-YOLOv8s的多场景火灾迹象检测算法
2
作者 崔克彬 耿佳昌 《图学学报》 北大核心 2025年第1期13-27,共15页
针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征... 针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征提取网络,保证模型轻量化的同时,优化图像特征提取;引入大型可分离核注意力机制LSKA改进SPPELAN模块,将空间金字塔部分改进为SPP_LSKA_ELAN,充分捕获大范围内的空间细节信息,在复杂多变的火灾场景中提取更全面的特征,从而区分目标与相似物体的差异;Neck部分引入可变形卷积DCN和跨空间高效多尺度注意力EMA,实现C2f_DCN_EMA可变形卷积校准模块,增强对烟火目标边缘轮廓变化的适应能力,促进特征的融合与校准,突出目标特征;在Head部分增设携带有轻量级、无参注意力机制SimAM的小目标检测头,并重新规划检测头通道数,加强多尺寸目标表征能力的同时,降低冗余以提高参数有效利用率。实验结果表明,改进后的EE-YOLOv8s网络模型相较于原模型,其参数量减少了13.6%,准确率提升了6.8%,召回率提升了7.3%,mAP提升了5.4%,保证检测速度的同时,提升了火灾迹象目标的检测性能。 展开更多
关键词 烟火目标检测 EfficientNetEasy主干网络 大型可分离核注意力机制 可变形卷积校准模块 小目标检测
下载PDF
General limited information diffusion method of small-sample information analysis in insurance 被引量:14
3
作者 忻莉莉 耿辉 +1 位作者 王永民 张晶晶 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期259-262,共4页
When analyzing and evaluating risks in insurance, people are often confronted with the situation of incomplete information and insufficient data, which is known as a small-sample problem. In this paper, a one-dimensio... When analyzing and evaluating risks in insurance, people are often confronted with the situation of incomplete information and insufficient data, which is known as a small-sample problem. In this paper, a one-dimensional small-sample problem in insurance was investigated using the kernel density estimation method (KerM) and general limited information diffusion method (GIDM). In particular, MacCormack technique was applied to get the solutions of GIDM equations and then the optimal diffusion solution was acquired based on the two optimization principles. Finally, the analysis introduced in this paper was verified by treating some examples and satisfying results were obtained. 展开更多
关键词 fuzzy mathematics kernel density estimation information diffusion MacCormack technique small-sample
下载PDF
改进YOLOv7的小目标检测算法研究 被引量:10
4
作者 李安达 吴瑞明 李旭东 《计算机工程与应用》 CSCD 北大核心 2024年第1期122-134,共13页
随着深度学习在国内目标检测的不断应用,常规的大、中目标检测已经取得惊人的进步,但由于卷积网络本身的局限性,针对小目标检测依然会出现漏检、误检的问题,以数据集Visdrone2019和数据集FloW-Img为例,对YOLOv7模型进行研究,在网络结构... 随着深度学习在国内目标检测的不断应用,常规的大、中目标检测已经取得惊人的进步,但由于卷积网络本身的局限性,针对小目标检测依然会出现漏检、误检的问题,以数据集Visdrone2019和数据集FloW-Img为例,对YOLOv7模型进行研究,在网络结构上对骨干网的ELAN模块进行改进,将Focal NeXt block加入到ELAN模块的长短梯度路径中融合来强化输出小目标的特征质量和提高输出特征包含的上下文信息含量,在头部网络引入RepLKDeXt模块,该模块不仅可以取代SPPCSPC模块来简化模型整体结构还可以利用多通道、大卷积核和Cat操作来优化ELAN-H结构,最后引入SIOU损失函数取代CIOU函数以此提高该模型的鲁棒性。结果表明改进后的YOLOv7模型参数量减少计算复杂性降低并在小目标密度高的Visdrone 2019数据集上的检测性能近似不变,在小目标稀疏的FloW-Img数据集上涨幅9.05个百分点,进一步简化了模型并增加了模型的适用范围。 展开更多
关键词 YOLOv7模型 小目标检测 大卷积核 损失函数
下载PDF
基于GRNN模型改进型对电池容量估计的研究
5
作者 张树川 孙巍 《长春理工大学学报(自然科学版)》 2024年第6期74-82,共9页
为了在高效率少量数据统计的情况下更为精准地估算18650电池剩余容量,基于GRNN非线性回归理论径向基神经网络模型,使用网格搜索对模型的核函数参数进行改进,使得其在少数据的情况下依旧能精准估算18650电池剩余容量。对电池进行循环充... 为了在高效率少量数据统计的情况下更为精准地估算18650电池剩余容量,基于GRNN非线性回归理论径向基神经网络模型,使用网格搜索对模型的核函数参数进行改进,使得其在少数据的情况下依旧能精准估算18650电池剩余容量。对电池进行循环充放电实验,提取循环中的相关参数,使用一节电池的数据进行训练,随后对其中4节进行容量估算,得出结果。研究表明:电池充放电时的参数,电池欧姆内阻与电池容量呈负相关,等压降放电时间与容量呈正相关。得到GRNN模型改进型,核函数参数为5,新模型对于少量数据的情况下的计算更为准确。 展开更多
关键词 少量数据情况 电池容量估算 GRNN模型 核函数参数 网格搜索
下载PDF
基于深度学习的小目标检测技术研究进展(特邀) 被引量:1
6
作者 刘耿焕 曾祥津 +4 位作者 豆嘉真 任振波 钟丽云 邸江磊 秦玉文 《红外与激光工程》 EI CSCD 北大核心 2024年第9期184-216,共33页
小目标检测在自动驾驶、安防等领域具有重要的应用价值。然而,由于小目标自身视觉特征不明显、复杂背景干扰以及信噪比低等因素,使得小目标检测一直以来都是一个极具挑战性的难题。笔者系统回顾了当前基于深度学习方法的小目标检测技术... 小目标检测在自动驾驶、安防等领域具有重要的应用价值。然而,由于小目标自身视觉特征不明显、复杂背景干扰以及信噪比低等因素,使得小目标检测一直以来都是一个极具挑战性的难题。笔者系统回顾了当前基于深度学习方法的小目标检测技术,对现有算法进行了系统地归类、分析和比较:界定了小目标检测的概念,总结了小目标检测所面临的主要挑战;着重讨论了几种主要的网络优化策略,如利用数据增强技术提高模型的泛化能力,通过超分辨率技术改善小目标可视性,采用多尺度信息融合技术提升检测精度,以及基于上下文信息学习和大核卷积策略改进特征表达能力、无锚框检测机制、DETR技术和针对特定应用场景的多模态小目标检测等方法并详细分析了其优缺点;全面介绍了现有小目标数据集,并在常用公共数据集上对目前经典的小目标检测算法进行了测试和性能评估;对小目标检测领域未来的研究方向进行了展望,旨在推动小目标检测技术的进一步发展和应用拓展。 展开更多
关键词 深度学习 小目标 目标检测 双模态 大核卷积
下载PDF
嵌入空间位置信息和多视角特征提取的红外小目标检测
7
作者 何自芬 薛金生 +1 位作者 张印辉 陈光晨 《红外与激光工程》 CSCD 北大核心 2024年第12期185-197,共13页
针对红外小目标图像的低分辨率、特征信息少、识别准确率低等问题,提出嵌入空间位置信息和多视角特征提取(Embedded Spatial Location Information and Multi-view Feature Extraction,ESLIMFE)的红外小目标检测模型。首先,随着网络深... 针对红外小目标图像的低分辨率、特征信息少、识别准确率低等问题,提出嵌入空间位置信息和多视角特征提取(Embedded Spatial Location Information and Multi-view Feature Extraction,ESLIMFE)的红外小目标检测模型。首先,随着网络深度的增加导致特征图分辨率逐渐减小从而丢失细节信息,因此在骨干网络中嵌入空间位置信息融合注意力机制(Spatial Location Information Fusion,SLIF)弥补小目标特征信息。其次,结合C3模块和动态蛇形卷积提出多视角特征提取(Multi-view Feature Extraction,MVFE)模块,通过在不同视角下提取同一特征来增强小目标的特征表达能力。采用大选择核(Large Selection Kernel,LSK)模块,通过使用不同大小的卷积核提取小目标多尺度信息,以提高对红外小目标定位能力。最后,引入基于注意力的尺度内特征交互(Attention-based Intrascale Feature Interaction,AIFI)模块增强特征之间的交互性。在对空红外小目标数据集上进行实验,实验结果表明,mAP75的检测精度为90.5%,mAP50~95检测精度为74.5%,文中模型能够较好地实现对红外小目标精确检测。 展开更多
关键词 空间位置信息 多视角特征提取 动态蛇形卷积 大选择核 基于注意力的尺度内特征交互 红外小目标
下载PDF
面向无人机视角下小目标检测的YOLOv8s改进模型 被引量:9
8
作者 潘玮 韦超 +1 位作者 钱春雨 杨哲 《计算机工程与应用》 CSCD 北大核心 2024年第9期142-150,共9页
从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(conce... 从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(concentration-based attention module)注意力机制改进卷积模块,解决注意力权重参数在感受野特征中共享问题的同时,在通道和空间维度加上注意力权重,增强特征提取能力;通过引入大型可分离卷积注意力思想,改造空间金字塔池化层,增加不同层级特征间的信息交融;优化颈部结构,增加具有丰富小目标语义信息的特征层;使用inner-IoU损失函数的思想改进MPDIoU(minimum point distance based IoU)函数,以innerMPDIoU代替原损失函数,提升对困难样本的学习能力。实验结果表明,改进后的YOLOv8s模型在VisDrone数据集上mAP、P、R分别提升了16.1%、9.3%、14.9%,性能超过YOLOv8m,可以有效应用于无人机平台上的目标检测任务。 展开更多
关键词 无人机 小目标检测 YOLOv8s 感受野注意力 大型可分离卷积
下载PDF
基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别 被引量:1
9
作者 王佳维 许枫 杨娟 《电子学报》 EI CAS CSCD 北大核心 2024年第1期217-231,共15页
针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗... 针对多基地水下小目标分类识别问题,本文提出了一种基于核空间联合稀疏表示和指数平滑的多基地水下小目标识别方法 .对水下目标多角度散射信号提取6种典型的具有信息互补性和关联性的特征,提出一种随机森林(Random Forest,RF)和最小冗余最大相关(minimum Redundancy and Maximum Relevance,mRMR)相结合的特征选择方法(RF-mRMR),得出综合的特征重要性排序结果 .通过实验得出分类模型所需的最优特征子集,达到降低数据处理复杂度和提高目标分类结果的目的 .为了捕捉到数据中的高阶结构,在联合稀疏表示模型的基础上,使用核函数将线性不可分的特征数据映射到高维核特征空间.为了充分挖掘稀疏重构后包含在残差波段中的有用信息,使用指数平滑公式对具有一定意义的残差信息进行再利用,最后由核特征空间下的最小误差准则判定目标的类别.应用本文提出的方法对4类目标的海试数据进行识别,结果表明,相较于其他7种对比算法,本文提出的改进方法具有更好的分类性能,而且大多数情况下,本文提出的算法在双基地声呐模式下具有比单基地声呐更高的识别准确率和更低的虚警率. 展开更多
关键词 多基地 水下小目标识别 多特征融合 特征选择 核空间联合稀疏表示 指数平滑
下载PDF
轨迹预测中局部自注意力时序编码网络
10
作者 史世莹 毛琳 杨大伟 《大连民族大学学报》 CAS 2024年第3期222-227,共6页
针对传统编码器应用于轨迹预测时,难以捕捉短暂停车或急转弯等局部时间尺度下的轨迹变化(简称局部变化)从而影响预测准确性的问题,提出一种局部自注意力时序编码架构(Loc-SelfAttention)。该算法充分利用小尺度卷积核的优越局部感知能力... 针对传统编码器应用于轨迹预测时,难以捕捉短暂停车或急转弯等局部时间尺度下的轨迹变化(简称局部变化)从而影响预测准确性的问题,提出一种局部自注意力时序编码架构(Loc-SelfAttention)。该算法充分利用小尺度卷积核的优越局部感知能力,敏锐地捕捉和提取局部变化的特征,并利用自注意力机制,根据局部变化对于未来轨迹分布的影响程度动态赋予提取的局部特征注意力权重,从而过滤噪声和杂点,筛选出有效的局部特征,提高轨迹预测准确性。实验结果表明:Loc-SelfAttention算法在Argoverse运动预测基准上与HOME轨迹预测算法相比,最小平均位移误差降低3.7%,最小最终位移误差降低3.1%,失误率降低4.8%,在自动驾驶和智能交通管理等领域具有一定应用前景。 展开更多
关键词 局部时间尺度 小尺度卷积核 自注意力机制 时序编码
下载PDF
基于非线性分数阶中值鉴别空间学习的岩爆预测方法
11
作者 樊腾悦 苏树智 朱彦敏 《湖北民族大学学报(自然科学版)》 CAS 2024年第4期480-485,513,共7页
针对岩爆样本数据噪声高、数量少从而导致岩爆等级预测准确率较低的问题,提出了基于非线性分数阶中值鉴别空间学习(nonlinear fractional-order median discriminative space learning,NFMDSL)的岩爆预测方法。该方法用类中值代替类均值... 针对岩爆样本数据噪声高、数量少从而导致岩爆等级预测准确率较低的问题,提出了基于非线性分数阶中值鉴别空间学习(nonlinear fractional-order median discriminative space learning,NFMDSL)的岩爆预测方法。该方法用类中值代替类均值,构建了中值鉴别空间学习方法,更好地保留了样本的有效信息,降低了噪声对预测效果的影响。为了有效捕捉岩爆数据间的非线性鉴别结构,进一步借助核技术将样本数据投影到核空间中。此外,引入分数阶对散度矩阵的特征值和奇异值进行重新估计,可以从少量样本中提取出具有良好区分能力的岩爆特征。结果表明,NFMDSL方法在岩爆等级预测中的平均准确率达到了95.75%,相比其他方法具有更高的准确率和更强的鲁棒性。该方法能够有效应用于矿山和隧道工程领域的岩爆预测。 展开更多
关键词 岩爆预测 类中值 核技术 散度矩阵 奇异值 少量样本 矿山和隧道工程
下载PDF
小数据条件下基于测地流核函数的域自适应故障诊断方法研究 被引量:14
12
作者 刘海宁 宋方臻 +2 位作者 窦仁杰 黄亦翔 刘成良 《振动与冲击》 EI CSCD 北大核心 2018年第18期36-42,共7页
针对机械设备的状态监测和故障诊断面临的先验样本数据少、样本空间不完备的"小数据"困境,提出了基于测地流核函数的域自适应故障诊断方法。以有限的先验样本数据作为源域,以实际监测数据作为目标域,分别提取设备状态特征并... 针对机械设备的状态监测和故障诊断面临的先验样本数据少、样本空间不完备的"小数据"困境,提出了基于测地流核函数的域自适应故障诊断方法。以有限的先验样本数据作为源域,以实际监测数据作为目标域,分别提取设备状态特征并将特征分布子空间嵌入格拉斯曼流形,基于测地流核函数对源域和目标域在特征分布结构上的相似性进行度量,从而实现域自适应基础上的故障诊断。基于轴承振动数据的试验验证表明,基于测地流核函数的域自适应故障诊断能够有效抑制工况变化、采样母体差异的影响,提高故障诊断正确率。 展开更多
关键词 域自适应 故障诊断 小数据 测地流核函数
下载PDF
基于TW-SVM预测模型的某堆石坝变形预测分析 被引量:4
13
作者 代凌辉 侯景梅 +1 位作者 郝晓宇 许晓瑞 《水利水电技术》 CSCD 北大核心 2017年第3期109-112,170,共5页
为提高监测资料有缺失的大坝变形预测模型精度,采用支持向量机方法建立一种具有小样本、高维、非线性的预测模型,并结合对其重要组成部分核函数的分析应用,提出一种根据结构风险最小化的TW-SVM预测模型。以某堆石坝为例进行研究,利用坝... 为提高监测资料有缺失的大坝变形预测模型精度,采用支持向量机方法建立一种具有小样本、高维、非线性的预测模型,并结合对其重要组成部分核函数的分析应用,提出一种根据结构风险最小化的TW-SVM预测模型。以某堆石坝为例进行研究,利用坝坡垂直位移和水平位移的监测数据,分别采用TW-SVM方法和BP神经网络(NET)方法建立相应预测模型进行比较分析。结果表明:采用TW-SVM方法和NET方法预测的垂直位移最大绝对误差分别为0.58 mm和6.18 mm,最大相对误差分别为270.00%和1 286.22%;采用TW-SVM方法和NET方法预测的水平位移最大绝对误差分别为0.25 mm和14.91 mm,最大相对误差分别为31.25%和1 189.85%;TW-SVM预测模型比NET预测模型更适合于影响因素为时间、水位的小样本预测分析。研究结果为堆石坝变形预测与分析提供参考。 展开更多
关键词 小样本 核函数 预测模型 变形监测 堆石坝
下载PDF
基于模糊分类的弱小目标检测方法 被引量:9
14
作者 李欣 赵亦工 +1 位作者 陈冰 薛晶 《光学精密工程》 EI CAS CSCD 北大核心 2009年第9期2311-2320,共10页
为了实现对红外云层背景下的弱小目标检测,提出了一种新的基于模糊分类的红外弱小目标检测方法。该方法直接从待分类图像中提取出不同的类别区域,使得分类模板准确地体现当前图像的不同类别,从而得到图像的准确类别以实现弱小目标检测... 为了实现对红外云层背景下的弱小目标检测,提出了一种新的基于模糊分类的红外弱小目标检测方法。该方法直接从待分类图像中提取出不同的类别区域,使得分类模板准确地体现当前图像的不同类别,从而得到图像的准确类别以实现弱小目标检测。首先,对红外天空背景弱小目标图像进行分析,将图像中的3类物体:净空、云及弱小目标细分为11个类别区域;其次,定义了类别特征矢量并基于此提出了类别核的定义,然后,根据类别核的定义从待检测图像中提取出11类区域的类别核;最后,根据模糊分类理论,定义了类别相似系数和类别贴近度,通过类别核对图像进行分类和类别归并,保留弱小目标类别完成检测。实验结果表明,该方法可对信噪比大于1.0的天空背景红外弱小目标图像中不同类型的区域进行准确分类,实现了对低信噪比的复杂云层背景图像中的弱小目标检测。 展开更多
关键词 目标检测 模糊分类 红外弱小目标 类别核
下载PDF
基于多尺度循环残差神经网络的图像去运动模糊 被引量:5
15
作者 方睿 周愉 +1 位作者 刘鹏 刘凯 《计算机工程与设计》 北大核心 2022年第3期786-793,共8页
现有图像去运动模糊结果容易在视觉感知上产生边缘特征不明显,出现大幅度的伪影现象,且在深度网络训练过程中,存在因加深网络导致参数过多不易训练即不稳定的问题,为此提出多尺度循环残差神经网络模型。在SRN基础上,为平衡评价指标(PSNR... 现有图像去运动模糊结果容易在视觉感知上产生边缘特征不明显,出现大幅度的伪影现象,且在深度网络训练过程中,存在因加深网络导致参数过多不易训练即不稳定的问题,为此提出多尺度循环残差神经网络模型。在SRN基础上,为平衡评价指标(PSNR、SSIM)与感知质量,提高图像中的高频细节信息等,进行多损失融合改进;在网络的编码器-解码器结构中,在其卷积层中使用小卷积核堆叠,加深网络的同时使网络参数更少更容易训练,更好地拟合图片的特征信息。实验结果表明,改进算法生成的网络模型取得了更好的去模糊结果。 展开更多
关键词 运动模糊 视觉感知 多损失融合 编码器-解码器 小卷积核堆叠
下载PDF
基于核密度估计的前视红外小目标跟踪 被引量:4
16
作者 魏长安 姜守达 孙超 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第7期763-767,共5页
针对前视红外图像中小目标较难跟踪的问题,提出了一种基于核密度估计的跟踪方法.融合灰度与局部加权灰度信息熵特征,对目标模板与候选目标区域进行核密度估计,通过均值偏移算法最小化目标候选区域的核密度分布与模板的核密度分布之间的... 针对前视红外图像中小目标较难跟踪的问题,提出了一种基于核密度估计的跟踪方法.融合灰度与局部加权灰度信息熵特征,对目标模板与候选目标区域进行核密度估计,通过均值偏移算法最小化目标候选区域的核密度分布与模板的核密度分布之间的距离来实现跟踪.跟踪过程中,由于受光照、遮挡等因素影响,目标特征可能发生渐变或突变,以Bhattacharyya系数为准则,对目标模板进行自动更新,解决了不能及时更新或过更新引起跟踪失败的问题.实验验证了所提出方法能够对前视红外小目标进行鲁棒的跟踪. 展开更多
关键词 小目标跟踪 核密度估计 局部加权灰度信息熵 模板更新
下载PDF
集成先验知识的多核线性规划支持向量回归 被引量:13
17
作者 周金柱 黄进 《自动化学报》 EI CSCD 北大核心 2011年第3期360-370,共11页
为了解决工程中数据样本较少情况下的准确建模问题,提出了一种集成先验知识的多核线性规划支持向量回归算法.该算法首先通过修改优化目标和不等式约束条件,把来自仿真模型具有偏差的先验知识数据集成到现有的线性规划支持向量回归的学... 为了解决工程中数据样本较少情况下的准确建模问题,提出了一种集成先验知识的多核线性规划支持向量回归算法.该算法首先通过修改优化目标和不等式约束条件,把来自仿真模型具有偏差的先验知识数据集成到现有的线性规划支持向量回归的学习框架中.然后,引入多核到集成先验知识的线性规划支持向量回归中以实现复杂规律的准确建模.最后,将算法推广到多输入多输出的数据建模中.仿真案例以及在天线和滤波器的实际应用表明:该算法求解简单,具有较好的模型稀疏和准确性. 展开更多
关键词 线性规划支持向量回归 先验知识 多核 小样本 天线 滤波器
下载PDF
基于核各向异性扩散的红外小目标检测 被引量:11
18
作者 凌强 黄树彩 +1 位作者 吴潇 钟宇 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第1期93-98,共6页
为了减少红外图像中背景边缘对检测的影响,提出了一种具有鲁棒性的弱小目标检测算法,该算法利用核各向异性扩散模型进行背景预测,再与原图像差分实现弱小目标检测。为了提高算法的自适应能力,提出了一种鲁棒性扩散系数,能够根据图像背... 为了减少红外图像中背景边缘对检测的影响,提出了一种具有鲁棒性的弱小目标检测算法,该算法利用核各向异性扩散模型进行背景预测,再与原图像差分实现弱小目标检测。为了提高算法的自适应能力,提出了一种鲁棒性扩散系数,能够根据图像背景的起伏程度自适应调整扩散系数曲线的陡峭程度。实验结果表明,与现有的检测算法相比,该算法能够在不同类型的复杂背景下有效抑制背景及其边缘,保留目标大小,降低虚警率,具有更强的鲁棒性。 展开更多
关键词 核各向异性扩散 小目标检测 背景预测 红外图像 鲁棒性
下载PDF
小世界体系的多对多核联想记忆模型及其应用 被引量:9
19
作者 陈蕾 陈松灿 张道强 《软件学报》 EI CSCD 北大核心 2006年第2期223-231,共9页
运用机器学习中新颖的核方法和社会网络中广泛存在的小世界现象,对Hattori等人提出的多模块多对多联想记忆模型(multi-moduleassociativememoryformany-to-manyassociations,简称(MMA)2)进行了改进,构建出了一个基于小世界体系的多对多... 运用机器学习中新颖的核方法和社会网络中广泛存在的小世界现象,对Hattori等人提出的多模块多对多联想记忆模型(multi-moduleassociativememoryformany-to-manyassociations,简称(MMA)2)进行了改进,构建出了一个基于小世界体系的多对多核联想记忆模型框架(smallworldstructureinspiredmanytomanykernelassociativememorymodels,简称SWSI-M2KAMs).该框架不仅克服了原模型不能联机提交训练样本且迭代次数过多的缺陷,而且拓展了原模型的智能信息处理范围.更重要的是,通过核函数的选取,该模型框架可以衍生出更多新的多对多联想记忆模型,而且,由于小世界结构的引入,在一定程度上简化了模型的结构复杂度.最后的计算机模拟,证实了新的模型具有良好的多对多联想记忆功能. 展开更多
关键词 神经网络 多对多联想记忆 核方法 小世界理论 智能信息处理
下载PDF
基于核的Fisher非线性最佳鉴别分析在人脸识别中的应用 被引量:9
20
作者 成新民 蒋云良 +1 位作者 胡文军 吴小红 《中国图象图形学报》 CSCD 北大核心 2007年第8期1395-1400,共6页
抽取最佳鉴别特征是人脸识别中的重要一步。对小样本的高维人脸图像样本,由于各种抽取非线性鉴别特征的方法均存在各自的问题,为此提出了一种求解核的Fisher非线性最佳鉴别特征的新方法,该方法首先在特征空间用类间散度阵和类内散度阵作... 抽取最佳鉴别特征是人脸识别中的重要一步。对小样本的高维人脸图像样本,由于各种抽取非线性鉴别特征的方法均存在各自的问题,为此提出了一种求解核的Fisher非线性最佳鉴别特征的新方法,该方法首先在特征空间用类间散度阵和类内散度阵作为Fisher准则,来得到最佳非线性鉴别特征,然后针对此方法存在的病态问题,进一步在类内散度阵的零空间中求解最佳非线性鉴别矢量。基于ORL人脸数据库的实验表明,该新方法抽取的非线性最佳鉴别特征明显优于Fisher线性鉴别分析(FLDA)的线性特征和广义鉴别分析(GDA)的非线性特征。 展开更多
关键词 人脸识别 Fisher非线性鉴别分析 核方法 小样本问题 病态问题
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部