After approximately half a century of development, HgCdTe infrared detectors have become the first choice for high performance infrared detectors, which are widely used in various industry sectors, including military ...After approximately half a century of development, HgCdTe infrared detectors have become the first choice for high performance infrared detectors, which are widely used in various industry sectors, including military tracking, military reconnaissance, infrared guidance, infrared warning, weather forecasting, and resource detection. Further development in infrared applications requires future HgCdTe infrared detectors to exhibit features such as larger focal plane array format and thus higher imaging resolution. An effective approach to develop HgCdTe infrared detectors with a larger array format size is to develop the small pixel technology. In this article, we present a review on the developmental history and current status of small pixel technology for HgCdTe infrared detectors, as well as the main challenges and potential solutions in developing this technology. It is predicted that the pixel size of long-wave HgCdTe infrared detectors can be reduced to5 μm, while that of mid-wave HgCdTe infrared detectors can be reduced to 3 μm. Although significant progress has been made in this area, the development of small pixel technology for HgCdTe infrared detectors still faces significant challenges such as flip-chip bonding, interconnection, and charge processing capacity of readout circuits. Various approaches have been proposed to address these challenges, including three-dimensional stacking integration and readout circuits based on microelectromechanical systems.展开更多
随着红外技术的发展,探测器的尺寸、重量和功耗(SWaP)的减小已成为研究热点。像元尺寸的减小,一方面可以提高器件的分辨率,另一方面可以减小整个探测器系统的体积、重量和功耗,进而大大节约成本。因此,像元尺寸的减小成了研究的重点。...随着红外技术的发展,探测器的尺寸、重量和功耗(SWaP)的减小已成为研究热点。像元尺寸的减小,一方面可以提高器件的分辨率,另一方面可以减小整个探测器系统的体积、重量和功耗,进而大大节约成本。因此,像元尺寸的减小成了研究的重点。本文介绍了小像元红外焦平面器件的技术难点,分别从系统的调制传递函数(Modulation Transfer Function,MTF)、噪声等效温差(Noise Equivalent Temperature Difference,NETD)、像元结构和像元集成互连方面进行了讨论。此外,介绍了国外像元中心距为12μm、10μm、8μm和5μm的HgCdTe红外焦平面探测器的研究进展。展开更多
文摘After approximately half a century of development, HgCdTe infrared detectors have become the first choice for high performance infrared detectors, which are widely used in various industry sectors, including military tracking, military reconnaissance, infrared guidance, infrared warning, weather forecasting, and resource detection. Further development in infrared applications requires future HgCdTe infrared detectors to exhibit features such as larger focal plane array format and thus higher imaging resolution. An effective approach to develop HgCdTe infrared detectors with a larger array format size is to develop the small pixel technology. In this article, we present a review on the developmental history and current status of small pixel technology for HgCdTe infrared detectors, as well as the main challenges and potential solutions in developing this technology. It is predicted that the pixel size of long-wave HgCdTe infrared detectors can be reduced to5 μm, while that of mid-wave HgCdTe infrared detectors can be reduced to 3 μm. Although significant progress has been made in this area, the development of small pixel technology for HgCdTe infrared detectors still faces significant challenges such as flip-chip bonding, interconnection, and charge processing capacity of readout circuits. Various approaches have been proposed to address these challenges, including three-dimensional stacking integration and readout circuits based on microelectromechanical systems.
文摘随着红外技术的发展,探测器的尺寸、重量和功耗(SWaP)的减小已成为研究热点。像元尺寸的减小,一方面可以提高器件的分辨率,另一方面可以减小整个探测器系统的体积、重量和功耗,进而大大节约成本。因此,像元尺寸的减小成了研究的重点。本文介绍了小像元红外焦平面器件的技术难点,分别从系统的调制传递函数(Modulation Transfer Function,MTF)、噪声等效温差(Noise Equivalent Temperature Difference,NETD)、像元结构和像元集成互连方面进行了讨论。此外,介绍了国外像元中心距为12μm、10μm、8μm和5μm的HgCdTe红外焦平面探测器的研究进展。