Intracystic renal stones are rare.The authors wishto report here an aged case of type 2 diabetes mellituscomplicated with sohtary renal cyst with intracysticstones.
Ternary strategy is one of the most effective methods to further boost the power conversion efficiency(PCE)of organic photovoltaic cells(OPVs).In terms of high-efficiency PM6:Y6 binary systems,there is still room to f...Ternary strategy is one of the most effective methods to further boost the power conversion efficiency(PCE)of organic photovoltaic cells(OPVs).In terms of high-efficiency PM6:Y6 binary systems,there is still room to further reduce energy_(loss)(E_(loss))through regulating molecular packing and aggregation by introducing a third component in the construction of ternary OPVs.Here we introduce a simple molecule BR1 based on an acceptor-donor-acceptor(A-D-A)structure with a wide bandgap and high crystallinity into PM6:Y6-based OPVs.It is proved that BR1 can be selectively dispersed into the donor phase in the PM6:Y6 and reduce disorder in the ternary blends,thus resulting in lower E_(loss,non-rad)and E_(loss).Furthermore,the mechanism study reveals well-develop phase separation morphology and complemented absorption spectra in the ternary blends,leading to higher charge mobility,suppressed recombination,which concurrently contributes to the significantly improved PCE of 17.23%for the ternary system compared with the binary ones(16.21%).This work provides an effective approach to improve the performance of the PM6:Y6-based OPVs by adopting a ternary strategy with a simple molecule as the third component.展开更多
文摘Intracystic renal stones are rare.The authors wishto report here an aged case of type 2 diabetes mellituscomplicated with sohtary renal cyst with intracysticstones.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22005234 and 61904134)Zhejiang Lab(No.2021MC0AB02).
文摘Ternary strategy is one of the most effective methods to further boost the power conversion efficiency(PCE)of organic photovoltaic cells(OPVs).In terms of high-efficiency PM6:Y6 binary systems,there is still room to further reduce energy_(loss)(E_(loss))through regulating molecular packing and aggregation by introducing a third component in the construction of ternary OPVs.Here we introduce a simple molecule BR1 based on an acceptor-donor-acceptor(A-D-A)structure with a wide bandgap and high crystallinity into PM6:Y6-based OPVs.It is proved that BR1 can be selectively dispersed into the donor phase in the PM6:Y6 and reduce disorder in the ternary blends,thus resulting in lower E_(loss,non-rad)and E_(loss).Furthermore,the mechanism study reveals well-develop phase separation morphology and complemented absorption spectra in the ternary blends,leading to higher charge mobility,suppressed recombination,which concurrently contributes to the significantly improved PCE of 17.23%for the ternary system compared with the binary ones(16.21%).This work provides an effective approach to improve the performance of the PM6:Y6-based OPVs by adopting a ternary strategy with a simple molecule as the third component.