期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
DOA estimation based on multi-frequency joint sparse Bayesian learning for passive radar 被引量:1
1
作者 WEN Jinfang YI Jianxin +2 位作者 WAN Xianrong GONG Ziping SHEN Ji 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1052-1063,共12页
This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the ... This paper considers multi-frequency passive radar and develops a multi-frequency joint direction of arrival(DOA)estimation algorithm to improve estimation accuracy and resolution.The developed algorithm exploits the sparsity of targets in the spatial domain.Specifically,we first extract the required frequency channel data and acquire the snapshot data through a series of preprocessing such as clutter suppression,coherent integration,beamforming,and constant false alarm rate(CFAR)detection.Then,based on the framework of sparse Bayesian learning,the target’s DOA is estimated by jointly extracting the multi-frequency data via evidence maximization.Simulation results show that the developed algorithm has better estimation accuracy and resolution than other existing multi-frequency DOA estimation algorithms,especially under the scenarios of low signalto-noise ratio(SNR)and small snapshots.Furthermore,the effectiveness is verified by the field experimental data of a multi-frequency FM-based passive radar. 展开更多
关键词 multi-frequency passive radar DOA estimation sparse Bayesian learning small snapshot low signal-to-noise ratio(SNR)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部