期刊文献+
共找到119篇文章
< 1 2 6 >
每页显示 20 50 100
Winter Wheat Crop Height Estimation Using Small Unmanned Aerial System (sUAS)
1
作者 Marife Kung Villareal Alejandro Fernandez Tongco Joe Mari J. Maja 《Agricultural Sciences》 2020年第4期355-368,共14页
Deploying the small Unmanned Aerial System (sUAS) for data collection of high-resolution images is a big potential in determining crop physiological parameters. The advantage of using sUAS technology is the ability to... Deploying the small Unmanned Aerial System (sUAS) for data collection of high-resolution images is a big potential in determining crop physiological parameters. The advantage of using sUAS technology is the ability to acquire a high-resolution orthophoto and a 3D Model which is highly suitable for plant height monitoring. Plant height estimation has a big impact in the growth and development of wheat because it is essential for obtaining biomass, which is a factor for higher crop yield. Plant height is an indicator of high yield estimation and it correlates to biomass, nitrogen content, and other plant growth parameters. The study is aimed to determine an accurate height of wheat using the sUAS generated Digital Surface Model (DSM). A high-resolution imagery between 1.0 - 1.2 cm/pixel was obtained from a 35 m altitude with area coverage of 1.01 hectares. The DSM and orthophoto were generated from the sUAS, and the computed wheat heights were derived from the difference of Digital Elevation Model (DEM) and DSM data. Field measurement using steel tape was done for ground truth. The sUAS-based wheat height data were evaluated using the ground truth of 66 wheat-rows by applying correlation and linear regression analysis. Datasets were collected from three different flight campaigns (March 2018-May 2018). The sUAS-based wheat height data were significantly correlated, obtaining the result of R2 = 0.988, R2 = 0.996 and R2 = 0.944 for the month of March, April and May 2018 respectively. The significance of linear regression results was also validated by computing for the p-value. The p-value results were 0.00064, 0.0000824 and 0.0058 respectively. The main concern is the lodging of winter wheat, especially during the month of April which affects the recording of the plant’s height. Because some of the wheat plants are now lying on the ground, so measurements are done vertically. Nonetheless, the results showed that sUAS technology is highly suitable for many agricultural applications. 展开更多
关键词 small unmanned aerial vehicle Plant HEIGHT DSM DEM
下载PDF
Online Multi-Object Tracking Under Moving Unmanned Aerial Vehicle Platform Based on Object Detection and Feature Extraction Network
2
作者 刘增敏 王申涛 +1 位作者 姚莉秀 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期388-399,共12页
In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion ... In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement. 展开更多
关键词 moving unmanned aerial vehicle(UAV)platform small object feature extraction image registration multi-object tracking
原文传递
Improved Weighted Local Contrast Method for Infrared Small Target Detection
3
作者 Pengge Ma Jiangnan Wang +3 位作者 Dongdong Pang Tao Shan Junling Sun Qiuchun Jin 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期19-27,共9页
In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted... In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV). 展开更多
关键词 infrared small target unmanned aerial vehicles(UAV) local contrast target detection
下载PDF
Adaptive cropping shallow attention network for defect detection of bridge girder steel using unmanned aerial vehicle images 被引量:3
4
作者 Zonghan MU Yong QIN +4 位作者 Chongchong YU Yunpeng WU Zhipeng WANG Huaizhi YANG Yonghui HUANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第3期243-256,共14页
Bridges are an important part of railway infrastructure and need regular inspection and maintenance.Using unmanned aerial vehicle(UAV)technology to inspect railway infrastructure is an active research issue.However,du... Bridges are an important part of railway infrastructure and need regular inspection and maintenance.Using unmanned aerial vehicle(UAV)technology to inspect railway infrastructure is an active research issue.However,due to the large size of UAV images,flight distance,and height changes,the object scale changes dramatically.At the same time,the elements of interest in railway bridges,such as bolts and corrosion,are small and dense objects,and the sample data set is seriously unbalanced,posing great challenges to the accurate detection of defects.In this paper,an adaptive cropping shallow attention network(ACSANet)is proposed,which includes an adaptive cropping strategy for large UAV images and a shallow attention network for small object detection in limited samples.To enhance the accuracy and generalization of the model,the shallow attention network model integrates a coordinate attention(CA)mechanism module and an alpha intersection over union(α-IOU)loss function,and then carries out defect detection on the bolts,steel surfaces,and railings of railway bridges.The test results show that the ACSANet model outperforms the YOLOv5s model using adaptive cropping strategy in terms of the total mAP(an evaluation index)and missing bolt mAP by 5%and 30%,respectively.Also,compared with the YOLOv5s model that adopts the common cropping strategy,the total mAP and missing bolt mAP are improved by 10%and 60%,respectively.Compared with the YOLOv5s model without any cropping strategy,the total mAP and missing bolt mAP are improved by 40%and 67%,respectively. 展开更多
关键词 RAILWAY BRIDGE unmanned aerial vehicle(UAV)image small object detection Defect detection
原文传递
Small objects detection in UAV aerial images based on improved Faster R-CNN 被引量:6
5
作者 WANG Ji-wu LUO Hai-bao +1 位作者 YU Peng-fei LI Chen-yang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期11-16,共6页
In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convo... In order to solve the problem of small objects detection in unmanned aerial vehicle(UAV)aerial images with complex background,a general detection method for multi-scale small objects based on Faster region-based convolutional neural network(Faster R-CNN)is proposed.The bird’s nest on the high-voltage tower is taken as the research object.Firstly,we use the improved convolutional neural network ResNet101 to extract object features,and then use multi-scale sliding windows to obtain the object region proposals on the convolution feature maps with different resolutions.Finally,a deconvolution operation is added to further enhance the selected feature map with higher resolution,and then it taken as a feature mapping layer of the region proposals passing to the object detection sub-network.The detection results of the bird’s nest in UAV aerial images show that the proposed method can precisely detect small objects in aerial images. 展开更多
关键词 Faster region-based convolutional neural network(Faster R-CNN) ResNet101 unmanned aerial vehicle(UAV) small objects detection bird’s nest
下载PDF
Bearing-only Visual SLAM for Small Unmanned Aerial Vehicles in GPS-denied Environments 被引量:6
6
作者 Chao-Lei Wang Tian-Miao Wang +2 位作者 Jian-Hong Liang Yi-Cheng Zhang Yi Zhou 《International Journal of Automation and computing》 EI CSCD 2013年第5期387-396,共10页
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observati... This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments. 展开更多
关键词 Visual simultaneous localization and mapping(SLAM) bearing-only observation inertial measurement unit small unmanned aerial vehicles(UAVs) GPS-denied environment
原文传递
MFE-YOLOX:无人机航拍下密集小目标检测算法 被引量:2
7
作者 马俊燕 常亚楠 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第1期128-135,共8页
针对无人机航拍时物体尺度变化大,检测目标大多较小且物体较密集的问题,提出一种混合特征增强结构(mix feature enhancement, MFE)方法。通过在超分辨率方法中加入注意力机制以增强小目标信息提取,利用一种新的特征层融合计算方法,加强... 针对无人机航拍时物体尺度变化大,检测目标大多较小且物体较密集的问题,提出一种混合特征增强结构(mix feature enhancement, MFE)方法。通过在超分辨率方法中加入注意力机制以增强小目标信息提取,利用一种新的特征层融合计算方法,加强不同特征层间的融合效率,提高了中小型目标的检测精度;设计了尾端感受野扩大层以扩大尾端特征层感受野,使检测头可接收丰富的物体信息来定位并区分密集物体。实验在数据集VisDrone2021的测试集上进行测试,MFE-YOLOX网络的AP50结果为47.78%,在参数量、计算量与原网络相近的情况下精度提高了9.43个百分点。 展开更多
关键词 小目标检测 无人机 注意力机制 特征融合 YOLOX
下载PDF
基于上下文信息与特征细化的无人机小目标检测算法 被引量:1
8
作者 彭晏飞 赵涛 +1 位作者 陈炎康 袁晓龙 《计算机工程与应用》 CSCD 北大核心 2024年第5期183-190,共8页
无人机航拍图像中的目标检测是近年来研究的热点,针对无人机视角下目标小而密集、背景复杂导致检测精度低的问题,提出一种基于上下文信息与特征细化的无人机小目标检测算法。通过上下文特征增强模块,利用多尺度扩张卷积捕获与周围区域... 无人机航拍图像中的目标检测是近年来研究的热点,针对无人机视角下目标小而密集、背景复杂导致检测精度低的问题,提出一种基于上下文信息与特征细化的无人机小目标检测算法。通过上下文特征增强模块,利用多尺度扩张卷积捕获与周围区域像素点的潜在关系,为网络补充上下文信息,并根据不同尺度的特征层自适应生成各层级特征图的输出权重,动态优化特征图表达能力;由于不同特征图细粒度不同,使用特征细化模块来抑制特征融合中冲突信息的干扰,防止小目标特征淹没在冲突信息中;设计了一种带权重的损失函数,加快模型收敛速度,进一步提高小目标检测精度。在VisDrone2021数据集进行大量实验表明,改进后的模型较基准模型mAP50提高8.4个百分点,mAP50:95提高5.9个百分点,FPS为42,有效提高了无人机航拍图像中小目标的检测精度。 展开更多
关键词 无人机 小目标检测 上下文信息 特征细化 损失函数
下载PDF
高阶深度可分离无人机图像小目标检测算法 被引量:1
9
作者 郭伟 王珠颖 金海波 《计算机系统应用》 2024年第5期144-153,共10页
当前无人机图像中存在小目标数量众多、背景复杂的特点,目标检测中易造成漏检误检率较高的问题,针对这些问题,提出一种高阶深度可分离无人机图像小目标检测算法.首先,结合CSPNet结构与ConvMixer网络,深度可分离卷积核,获取梯度结合信息... 当前无人机图像中存在小目标数量众多、背景复杂的特点,目标检测中易造成漏检误检率较高的问题,针对这些问题,提出一种高阶深度可分离无人机图像小目标检测算法.首先,结合CSPNet结构与ConvMixer网络,深度可分离卷积核,获取梯度结合信息,并引入递归门控卷积C3模块,提升模型的高阶空间交互能力,增强网络对小目标的敏感度;其次,检测头采用两个头部进行解耦,分别输出特征图分类和位置信息,加快模型收敛速度;最后,使用边框损失函数EIoU,提高检测框精准度.在VisDrone2019数据集上的实验结果表明,该模型检测精度达到了35.1%,模型漏检率和误检率有明显下降,能够有效地应用于无人机图像小目标检测任务.在DOTA 1.0数据集和HRSID数据集上进行模型泛化能力测试,实验结果表明,该模型具有良好的鲁棒性. 展开更多
关键词 小目标检测 递归门控卷积 解耦头 无人机图像 YOLOv5
下载PDF
基于低空视觉的直升机旋翼轴心轨迹测量法
10
作者 胡丙华 晏晖 《应用光学》 CAS 北大核心 2024年第4期774-780,共7页
为满足直升机飞行状态旋翼轴心轨迹测量需求,提出了一种基于低空双目视觉的轴心轨迹测量方法。首先,针对高速旋转体的小量测量,基于立体视觉测量原理设计构建了以无人机为低空移动平台的旋翼轴心轨迹视觉测量系统。其次,针对动-动测量... 为满足直升机飞行状态旋翼轴心轨迹测量需求,提出了一种基于低空双目视觉的轴心轨迹测量方法。首先,针对高速旋转体的小量测量,基于立体视觉测量原理设计构建了以无人机为低空移动平台的旋翼轴心轨迹视觉测量系统。其次,针对动-动测量环境条件,提出了地面标定与空中动态实时标定联合的测量系统标定方法。然后,基于空间几何关系,论述了旋翼轴心静态估计与动态轨迹测量方法;最后,进行了测量系统地面精度验证试验与直升机地面开车状态的旋翼轴心轨迹测量试验。试验结果表明,该方法准确可靠,点间距离精度优于1‰,可实现轴心轨迹的非接触精确测量,还可推广应用于其他动态小量测量任务。 展开更多
关键词 低空视觉 旋翼 轴心轨迹测量 无人机 小量测量
下载PDF
从飞行汽车看低空经济新业态
11
作者 沈海军 《学术前沿》 北大核心 2024年第15期69-75,共7页
近年来,我国低空经济呈现蓬勃发展态势,相关政策密集出台,企业也作出了积极响应,行业发展确定性进一步增强,相关产业取得长足发展,特别是无人机领域处于世界先进水平,但我国低空经济整体水平与欧美发达国家相比仍有一定差距。通用航空... 近年来,我国低空经济呈现蓬勃发展态势,相关政策密集出台,企业也作出了积极响应,行业发展确定性进一步增强,相关产业取得长足发展,特别是无人机领域处于世界先进水平,但我国低空经济整体水平与欧美发达国家相比仍有一定差距。通用航空、无人机、飞行汽车是低空经济的主要产业领域,特别是近年出现的飞行汽车被视为低空经济发展的新引擎。在飞行汽车研发方面,国内外均尚处于起步阶段,我国在若干局部技术上领先,但并未形成明显优势。未来,需推动飞行汽车品质和关键技术的不断突破,同时,也要加紧筹划和完善配套的法律法规、基础设施、行业标准、运行环境及监管政策以推动城市空中交通(UAM)体系的建设和低空经济的整体发展。 展开更多
关键词 低空经济 飞行汽车 通用小飞机 无人机
下载PDF
改进YOLOv5s的无人机视角下小目标检测算法 被引量:6
12
作者 吴明杰 云利军 +1 位作者 陈载清 钟天泽 《计算机工程与应用》 CSCD 北大核心 2024年第2期191-199,共9页
针对无人机飞行时与目标距离较远,被拍摄的目标大小有明显的差异且存在被物体遮挡等问题,提出一种基于YOLOv5s的无人机视角下小目标检测改进算法BD-YOLO。在特征融合网络中采用双层路由注意力(bi-level routing attention,BRA),其以动... 针对无人机飞行时与目标距离较远,被拍摄的目标大小有明显的差异且存在被物体遮挡等问题,提出一种基于YOLOv5s的无人机视角下小目标检测改进算法BD-YOLO。在特征融合网络中采用双层路由注意力(bi-level routing attention,BRA),其以动态稀疏的方式过滤特征图中最不相关的特征,保留部分重要区域特征,从而提高模型特征提取的能力;由于特征图经过多次下采样后会丢失大量位置信息和特征信息,因此采用一种结合注意力机制的动态目标检测头DyHead(dynamic head),该检测头通过尺度感知、空间感知和任务感知的三者统一,以实现更强的特征表达能力;使用Focal-EIoU损失函数,来解决YOLOv5s中CIoU Loss计算回归结果不准确的问题,从而提高模型对小型目标的检测精度。实验结果表明,在VisDrone2019-DET数据集上,BD-YOLO模型较YOLOv5s模型在平均精度(mAP@0.5)指标上提高了0.062,对比其他主流模型对于小目标的检测都有更好的效果。 展开更多
关键词 无人机视角 YOLOv5s 小目标 注意力机制 损失函数
下载PDF
基于改进YOLOX的无人机航拍图像小目标检测算法 被引量:2
13
作者 潘翔 陈前斌 +2 位作者 黄昂 罗佳 唐伦 《南京邮电大学学报(自然科学版)》 北大核心 2024年第1期90-100,共11页
在无人机上运用目标检测技术具有广泛的应用前景,但和自然拍摄的图像不同,无人机航拍的图像更加复杂,且大多数为小目标。而现有的检测算法缺乏对小目标的特征提取能力,从而导致严重的误检和漏检问题。针对上述问题,提出一种基于YOLOX框... 在无人机上运用目标检测技术具有广泛的应用前景,但和自然拍摄的图像不同,无人机航拍的图像更加复杂,且大多数为小目标。而现有的检测算法缺乏对小目标的特征提取能力,从而导致严重的误检和漏检问题。针对上述问题,提出一种基于YOLOX框架的高效的无人机小目标检测算法。首先,在特征融合网络中增加一层检测微小目标的特征融合结构,通过利用浅层特征图中丰富的位置信息和轮廓信息来加强网络对小目标的识别能力;同时,为了防止额外参数的增加,将减少头网络中的一层卷积层并缩减其通道数。其次,提出一种通道-空间注意力机制模块(Channel Spatial Attention Module,CSAM),利用最优的权重分配使网络聚焦于特征图中小目标密集的区域。最后,提出一种带位置引导的标签分配策略(LB-SimOTA),根据每个预测框和真实框的交并比(IOU)的大小,分别配以不同的权重,以改善网络中整体预测框的质量。在小目标居多的数据集VisDrone2019上的实验结果表明,文中提出的算法和YOLOX-S相比,针对车和人的检测精度提升了8.63%,检测速度FPS也可达到86,因此更适合在无人机对地面小目标检测的场景下部署。 展开更多
关键词 无人机 小目标检测 多尺度检测 注意力机制 标签分配策略
下载PDF
基于改进YOLOv4的低慢小无人机实时探测算法 被引量:1
14
作者 吴璇 张海洋 +2 位作者 赵长明 李志朋 王元泽 《应用光学》 CAS 北大核心 2024年第1期79-88,共10页
针对低慢小无人机探测任务中精度不高、在嵌入式平台上部署实时性能差的问题,提出了一种基于改进YOLOv4的小型无人机目标检测算法。通过增加浅层特征图、改进锚框、增强小目标,提高网络对小目标的检测性能,通过稀疏训练和模型修剪,大大... 针对低慢小无人机探测任务中精度不高、在嵌入式平台上部署实时性能差的问题,提出了一种基于改进YOLOv4的小型无人机目标检测算法。通过增加浅层特征图、改进锚框、增强小目标,提高网络对小目标的检测性能,通过稀疏训练和模型修剪,大大缩短了模型运行时间。在1080Ti上平均精度(mAP)达到85.8%,帧率(FPS)达75 frame/s,实现了网络轻量化。该模型部署在Xavier边缘计算平台上,可实现60 frame/s的无人机目标检测速度。实验结果表明:与YOLOv4和YOLOv4-tiny相比,该算法实现了运行速度和检测精度的平衡,能够有效解决嵌入式平台上的无人机目标检测问题。 展开更多
关键词 低慢小无人机 目标检测 YOLOv4 剪枝 嵌入式
下载PDF
面向无人机视角下小目标检测的YOLOv8s改进模型 被引量:3
15
作者 潘玮 韦超 +1 位作者 钱春雨 杨哲 《计算机工程与应用》 CSCD 北大核心 2024年第9期142-150,共9页
从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(conce... 从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(concentration-based attention module)注意力机制改进卷积模块,解决注意力权重参数在感受野特征中共享问题的同时,在通道和空间维度加上注意力权重,增强特征提取能力;通过引入大型可分离卷积注意力思想,改造空间金字塔池化层,增加不同层级特征间的信息交融;优化颈部结构,增加具有丰富小目标语义信息的特征层;使用inner-IoU损失函数的思想改进MPDIoU(minimum point distance based IoU)函数,以innerMPDIoU代替原损失函数,提升对困难样本的学习能力。实验结果表明,改进后的YOLOv8s模型在VisDrone数据集上mAP、P、R分别提升了16.1%、9.3%、14.9%,性能超过YOLOv8m,可以有效应用于无人机平台上的目标检测任务。 展开更多
关键词 无人机 小目标检测 YOLOv8s 感受野注意力 大型可分离卷积
下载PDF
基于改进Double-Head RCNN的无人机航拍图像小目标检测算法 被引量:1
16
作者 王殿伟 胡里晨 +1 位作者 房杰 许志杰 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2141-2149,共9页
为解决无人机航拍图像中小目标特征信息少且容易被噪声干扰导致现有算法漏检率和误检率高的问题,提出一种改进Double-Head Region-卷积神经网络(RCNN)的无人机航拍图像小目标检测算法。在骨干网络ResNet-50上引入Transformer和可变形卷... 为解决无人机航拍图像中小目标特征信息少且容易被噪声干扰导致现有算法漏检率和误检率高的问题,提出一种改进Double-Head Region-卷积神经网络(RCNN)的无人机航拍图像小目标检测算法。在骨干网络ResNet-50上引入Transformer和可变形卷积(DCN)模块,更有效提取小目标特征信息和语义信息;提出一种基于内容感知特征重组(CARAFE)的特征金字塔网络(FPN)结构模块,解决特征融合过程中小目标被背景噪声干扰而丢失特征信息的问题;在区域建议网络中针对小目标尺度分布特点重新设置Anchor生成尺度,进一步提升小目标检测性能。在VisDrone-DET2021数据集上的实验结果表明:所提算法能提取更具有表征能力的小目标特征信息和语义信息,对比Double-Head RCNN算法,所提算法的参数量增加了9.73×10^(6),FPS损失了0.6,但是AP、AP50和AP75分别提升了2.6%、6.2%和2.1%,APs提升了3.1%。 展开更多
关键词 小目标检测 无人机航拍图像 Double-Head RCNN TRANSFORMER 内容感知特征重组
下载PDF
高分辨率特征增强的无人机航拍小目标检测
17
作者 周璇 葛琦 邵文泽 《数据采集与处理》 CSCD 北大核心 2024年第4期908-921,共14页
针对无人机航拍图像背景复杂、小尺寸目标分布密集等造成的检测精度低等问题,提出一种高分辨率特征增强的无人机航拍小目标检测算法。首先,提出了高分辨率特征增强网络,通过减少主干网络的下采样倍数来扩大输出特征图的尺度,同时引入双... 针对无人机航拍图像背景复杂、小尺寸目标分布密集等造成的检测精度低等问题,提出一种高分辨率特征增强的无人机航拍小目标检测算法。首先,提出了高分辨率特征增强网络,通过减少主干网络的下采样倍数来扩大输出特征图的尺度,同时引入双线性插值法来减少采样后特征信息的丢失,从而保留更多语义特征与细节特征。其次,在主干网络嵌入一种结合局部跨阶段结构的快速空间金字塔池化(Spatial pyramid pooling fast cross stage partial construction,SPPFCSPC)模块,增强局部与全局特征的信息融合,从而获得更大的感受野。最后,通过马赛克混合数据增强方法来增强图像背景的复杂度,提高模型的泛化能力。在公开数据集VisDrone 2019上的实验结果表明,与“你只需看一次”(You only look once,YOLO)系列等其他主流算法相比,本文算法的平均精度均值有显著的提高,在不同场景下均验证了本文算法的优越性,表明本文算法对无人机航拍图像的密集小目标检测任务有较强的实用性。 展开更多
关键词 小目标检测 无人机航拍图像 空间金字塔池化
下载PDF
基于NDM-YOLOv8的无人机图像小目标检测
18
作者 程期浩 陈东方 王晓峰 《计算机技术与发展》 2024年第9期63-69,共7页
针对无人机航拍图像中小目标实例多、目标之间存在遮挡的现象,容易造成漏检、误检等问题,提出一种新的基于非跨步动态多头结构的小目标检测算法(Non-strided Dynamic Multihead YOLOv8,NDM-YOLOv8)。首先,设计了SConv模块,融合了非跨步... 针对无人机航拍图像中小目标实例多、目标之间存在遮挡的现象,容易造成漏检、误检等问题,提出一种新的基于非跨步动态多头结构的小目标检测算法(Non-strided Dynamic Multihead YOLOv8,NDM-YOLOv8)。首先,设计了SConv模块,融合了非跨步卷积,尽可能地保留输入数据的判别特征信息,以降低小目标特征的细粒度信息的丢失;其次,设计了C2f-LSK模块,通过采用选择机制对空间特征进行有效加权,动态地调整感受野,灵活地捕捉不同尺度的特征和上下文信息,提高模型对小目标的关注度;最后,设计了P2小目标检测头,并和高层网络进行残差连接,减少小目标特征丢失,以强化算法对小目标特征的提取能力。实验表明,NDM-YOLOv8有效提高了对无人机图像中小目标检测精度。在公开数据集VisDrone2019上,NDM-YOLOv8比YOLOv8n在mAP_(0.5)提高了5.3百分点,mAP_(0.5:0.95)上提高了3.3百分点,对比其他模型,也取得了较优的检测效果,能够有效地完成无人机航拍图像中小目标检测任务。 展开更多
关键词 无人机 小目标检测 YOLOv8 感受野 特征提取
下载PDF
基于YOLOv8的无人机图像目标检测算法 被引量:1
19
作者 赵继达 甄国涌 储成群 《计算机工程》 CAS CSCD 北大核心 2024年第4期113-120,共8页
在无人机(UAV)目标检测任务中,存在因检测目标尺度小、检测图像背景复杂等原因导致的漏检、误检问题。针对上述问题,提出改进YOLOv8s的无人机图像目标检测算法。首先,针对无人机拍摄目标普遍为小目标的应用场景,减少算法骨干网络(Backbo... 在无人机(UAV)目标检测任务中,存在因检测目标尺度小、检测图像背景复杂等原因导致的漏检、误检问题。针对上述问题,提出改进YOLOv8s的无人机图像目标检测算法。首先,针对无人机拍摄目标普遍为小目标的应用场景,减少算法骨干网络(Backbone)层数,增大待检测特征图尺寸,使得网络模型更专注于微小目标;其次,针对数据集普遍存在一定数量低质量示例影响训练效果的问题,引入Wise-Io U损失函数,增强数据集训练效果;再次,通过引入上下文增强模块,获得小目标在不同感受野下的特征信息,改善算法在复杂环境下对小目标的定位和分类效果;最后,设计空间-通道滤波模块,增强卷积过程中目标的特征信息,滤除无用的干扰信息,改善卷积过程中部分微小目标特征信息被淹没、丢失的现象。在Vis Drone2019数据集上的实验结果表明,该算法的平均检测精度(m AP@0.5)达到45.4%,相较于原始YOLOv8s算法提高7.3个百分点,参数量减少26.13%。在相同实验条件下,相比其他常见小目标检测算法,检测精度和检测速度也有一定提升。 展开更多
关键词 目标检测 无人机 小目标 滤波 改进YOLOv8算法 注意力机制
下载PDF
面向无人机图像场景的小目标检测模型 被引量:1
20
作者 朱堃煌 孙博 毛国君 《计算机工程与应用》 CSCD 北大核心 2024年第15期243-251,共9页
无人机因其飞行高度和拍摄角度的独特性,采集的遥感图像中存在大量小目标。小目标物体像素小、语义信息少,容易受背景信息干扰和出现聚集遮挡,是当前检测模型性能不佳的主要原因之一。提出一种面向小目标的无人机图像目标检测模型UAIDet... 无人机因其飞行高度和拍摄角度的独特性,采集的遥感图像中存在大量小目标。小目标物体像素小、语义信息少,容易受背景信息干扰和出现聚集遮挡,是当前检测模型性能不佳的主要原因之一。提出一种面向小目标的无人机图像目标检测模型UAIDet(unmanned aerial vehicles images detector),从解决信息冲突和检测框回归难入手,提升模型的检测性能。其一,构建自适应的通道融合模块,在特征融合阶段动态学习通道权重以过滤不同尺度特征之间的信息冲突,抑制特征融合时的尺度不一致性,提高小目标物体的检测能力;其二,设计误差敏感定位损失函数,在小目标物体检测框的收敛阶段提出偏移敏感损失项以解决小目标对几何误差的敏感性,提高定位损失函数的鲁棒性,优化小目标物体的检测精度。在数据集Visdrone2022上对文章方法进行实验,mAP(means average precision)和AP50(average precision at IOU threshold 50%)分别达到了22.0%和37.1%,相较于基准模型分别提高3和4.7个百分点。TinyPerson数据集上的mAP和AP50为9.9%和29.1%,分别提高了4.29和4.2个百分点,证明UAIDet模型的有效性和鲁棒性。 展开更多
关键词 目标检测 无人机图像 小目标 特征融合 损失函数
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部