We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant st...We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant structural properties of our network such as the distribution of link-degree,the maximum link-degree,and thegth of the shortest path.We further argue several dynamical characteristics of the model such as the important criticalvalue f_c,the f_0 avalanche,and the mutating condition,and find that those characteristics show panticular behaviors.展开更多
In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its...In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.展开更多
The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distri...The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system.展开更多
We propose a simple mechanism for generating scale-free networks with degree exponent γ=3, where the new node is connected to the existing nodes by step-by-step random walk. It is found that the clique-degree distrib...We propose a simple mechanism for generating scale-free networks with degree exponent γ=3, where the new node is connected to the existing nodes by step-by-step random walk. It is found that the clique-degree distribution based on our model obeys a power-law form, which is in agreement with the recently empirical evidences. In addition, our model displays the small-world effect and the hierarchical structure.展开更多
A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The resul...A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The results of the model indicate that the bounded confidence εc, separating consensus and incoherent states, of a scale-free network is much smaller than the one of a lattice. If the system can reach the consensus state, the sum of all individuals' opinion change Oc(t) quickly decreases in an exponential form, while if it reaches the incoherent state finally, Oc(t) decreases slowly and has the punctuated equilibrium characteristic.展开更多
The use of mobile nodes to improve network system performance has drawn considerable attention recently The movement-assisted model considers mobility as a desirable feature, where routing is based on the store-carry-...The use of mobile nodes to improve network system performance has drawn considerable attention recently The movement-assisted model considers mobility as a desirable feature, where routing is based on the store-carry-forward paradigm with random or controlled movement of resource rich mobile nodes. The application of such a model has been used in several emerging networks, including mobile ad hoc networks (MANETs), wireless sensor networks (WSNs), and delay tolerant networks (DTNs). It is well known that mobility increases the capacity of MANETs by reducing the number of relays for routing, prolonging the lifespan of WSNs by using mobile nodes in place of bottleneck static sensors, and ensuring network connectivity in DTNs using mobile nodes to connect different parts of a disconnected network. Trajectory planning and the coordination of mobile nodes are two important design issues aiming to optimize or balance several measures, including delay, average number of relays, and moving distance. In this paper, we propose a new controlled mobility model with an expected polylogarithmic number of relays to achieve a good balance among several contradictory goals, including delay, the number of relays, and moving distance. The model is based on the small-world model where each static node has "short" link connections to its nearest neighbors and "long" link connections to other nodes following a certain probability distribution. Short links are regular wireless connections whereas long links are implemented using mobile nodes. Various issues are considered, including trade-offs between delay and average number of relays, selection of the number of mobile nodes, and selection of the number of long links. The effectiveness of the proposed model is evaluated analytically as well as through simulation.展开更多
基金National Natural Science Foundation of China under Grant No.10675060the Doctoral Foundation of the Ministry of Education of China under Grant No.2002055009
文摘We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant structural properties of our network such as the distribution of link-degree,the maximum link-degree,and thegth of the shortest path.We further argue several dynamical characteristics of the model such as the important criticalvalue f_c,the f_0 avalanche,and the mutating condition,and find that those characteristics show panticular behaviors.
文摘In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61402485,61303061,and 71201169)
文摘The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution(i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo treelike model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system.
基金Supported by the National Basic Research Programme of China under Grant No 2006CB705500, the National Natural Science Foundation of China under Grant Nos 60744003, 10635040, 10532060 and 10472116, the Special Research Funds for Theoretical Physics Frontier Problems (NSFC Nos 10547004 and A0524701), the President Funding of Chinese Academy of Sciences, and the Specialized Research Fund for the Doctoral Programme of Higher Education of China.
文摘We propose a simple mechanism for generating scale-free networks with degree exponent γ=3, where the new node is connected to the existing nodes by step-by-step random walk. It is found that the clique-degree distribution based on our model obeys a power-law form, which is in agreement with the recently empirical evidences. In addition, our model displays the small-world effect and the hierarchical structure.
基金Supported by the National Basic Research Programme of China under Grant No 2006CB705500, the National Natural Science Foundation of China under Grant Nos 10635040, 10532060, 70571074 and 10472116, the Special Research Funds for Theoretical Physics Frontier Problems (A0524701), the President Fund of Chinese Academy of Sciences, the Specialized Research Fund for the Doctoral Programme of Higher Education of China, and the Research Fund of the Education Department of Liaoning Province (20060140). The authors thank Dr Ming Zhao for her comments and suggestions.
文摘A continuum opinion dynamic model is presented based on two rules. The first one considers the mobilities of the individuals, the second one supposes that the individuals update their opinions independently. The results of the model indicate that the bounded confidence εc, separating consensus and incoherent states, of a scale-free network is much smaller than the one of a lattice. If the system can reach the consensus state, the sum of all individuals' opinion change Oc(t) quickly decreases in an exponential form, while if it reaches the incoherent state finally, Oc(t) decreases slowly and has the punctuated equilibrium characteristic.
基金NSF of USA under Grant Nos.CCR 0329741,CNS 0422762,CNS 0434533,CNS 0531410,and CNS 0626240.
文摘The use of mobile nodes to improve network system performance has drawn considerable attention recently The movement-assisted model considers mobility as a desirable feature, where routing is based on the store-carry-forward paradigm with random or controlled movement of resource rich mobile nodes. The application of such a model has been used in several emerging networks, including mobile ad hoc networks (MANETs), wireless sensor networks (WSNs), and delay tolerant networks (DTNs). It is well known that mobility increases the capacity of MANETs by reducing the number of relays for routing, prolonging the lifespan of WSNs by using mobile nodes in place of bottleneck static sensors, and ensuring network connectivity in DTNs using mobile nodes to connect different parts of a disconnected network. Trajectory planning and the coordination of mobile nodes are two important design issues aiming to optimize or balance several measures, including delay, average number of relays, and moving distance. In this paper, we propose a new controlled mobility model with an expected polylogarithmic number of relays to achieve a good balance among several contradictory goals, including delay, the number of relays, and moving distance. The model is based on the small-world model where each static node has "short" link connections to its nearest neighbors and "long" link connections to other nodes following a certain probability distribution. Short links are regular wireless connections whereas long links are implemented using mobile nodes. Various issues are considered, including trade-offs between delay and average number of relays, selection of the number of mobile nodes, and selection of the number of long links. The effectiveness of the proposed model is evaluated analytically as well as through simulation.