Beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF) is dedicated to studying the microstructure and dynamic processes of polymers, nanomaterials, mesoporous materials, colloids, liquid crystals,metal mate...Beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF) is dedicated to studying the microstructure and dynamic processes of polymers, nanomaterials, mesoporous materials, colloids, liquid crystals,metal materials, etc. At present, SAXS, wide angle X-ray scattering(WAXS), simultaneous SAXS/WAXS,grazing incident SAXS, and anomalous SAXS techniques are available for end user to conduct diverse experiments at this beamline. The sample-to-detector distance is adjustable from 0.2 m to 5 m. The practicable q-range is 0.03–3.6 nm-1at incident X-ray of 10 ke V for conventional SAXS whilst a continuous q-region of0.06–33 nm-1can be achieved in simultaneous SAXS/WAXS mode. Time-resolved SAXS measurements in sub-second level was achieved by the beamline upgrating in 2013. This paper gives detailed descriptions about the status, performance and applications of the SAXS beamline.展开更多
The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major stre...The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.展开更多
The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scatte...The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scattering (SAXS).The results show that the precipitates are only a few nanorneters for both alloys ageing even at higher temperature of 160℃ for 72 h (4.44 and 5.82 nm, respectively). The maximum of the precipitate volume fraction increases with in creasing Zn content and is about 0.023-0.028 and 0.052-0.054, respectively. The coarsening of precipitate is consistent with LSW (Lifshitz-Slyozov-Wagner) model even at the initial stage where volume fraction is still varying.The activation energy of coarsening regime has been determined to be about 1.22±0.02 eV and 1.25±0.02 eV for alloys 7075 and 7055, respectively.展开更多
The Dividing Distribution Function (DDF) method is one of the methods by which the particle size distribution of ultrafine powder can be evaluated from its small angle X-ray scattering data. In this paper, the stabili...The Dividing Distribution Function (DDF) method is one of the methods by which the particle size distribution of ultrafine powder can be evaluated from its small angle X-ray scattering data. In this paper, the stability of the solution obtained from DDF method has been investigated through optimizing the coefficient matrix, introducing a damping factor and a least square treatment. All calculations were accomplished with a microcomputer. It was shown that the average deviations of the size distribution obtained are not larger than the assigned random errors to the scattering intensities as long as the corresponding requirements are satisfied.展开更多
Small angle X-ray scattering (SAXS) was used to study the effect of dissolved CO2 on the conformation of polystyrene (PS) in PS/tetrahydrofuran(THF) solution at 308.15 K and at pressures up to 3 MPa. The cloud pressur...Small angle X-ray scattering (SAXS) was used to study the effect of dissolved CO2 on the conformation of polystyrene (PS) in PS/tetrahydrofuran(THF) solution at 308.15 K and at pressures up to 3 MPa. The cloud pressure and the expansion curve of the solution were also determined. The dependence of the conformation on pressure was discussed.展开更多
In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (S...In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.展开更多
Synchrotron microfocus small angle X-ray scattering was used to investigate the nanostructure and microscopic variation of eggshells. It uses a microbeam allowing the ability to probe interactions between the organic ...Synchrotron microfocus small angle X-ray scattering was used to investigate the nanostructure and microscopic variation of eggshells. It uses a microbeam allowing the ability to probe interactions between the organic and inorganic components at nanometer level and is ideal for mapping over small areas to obtain a detailed analysis of structural variations. Thin sections of eggshells were scanned from the shell membrane (inner) to the cuticle (outer) surface. The data collected was used to produce two-dimensional maps showing microscopic changes within the different layers of the eggshell. The structural alterations ap- parently could have implications at the macroscopic level of the resulting eggshell. As the organic matrix is embedded within the eggshell this may contribute to the variations observed in calcite crystal form and texture, Structural information obtained about a biomaterial at different length scales is important in relating the structure to its functional properties. This knowledge and the principles behind the formation of biomaterials could be used in the attempt of bioengineering new systems.展开更多
In the present work,the precipitate compositions and precipitate amounts of these elements(including the size distribution,volume fraction,and inter-precipitate distance) on the Cu-containing 7000 series aluminum al...In the present work,the precipitate compositions and precipitate amounts of these elements(including the size distribution,volume fraction,and inter-precipitate distance) on the Cu-containing 7000 series aluminum alloys(7150 and 7085 Al alloys),are investigated by anomalous small-angle x-ray scattering(ASAXS) at various energies.The scattering intensity of 7150 alloy with T6 aging treatment decreases as the incident x-ray energy approaches the Zn absorption edge from the lower energy side,while scattering intensity does not show a noticeable energy dependence near the Cu absorption edge.Similar results are observed in the 7085 alloy in an aging process(120℃) by employing in-situ ASAXS measurements,indicating that the precipitate compositions should include Zn element and should not be strongly related to Cu element at the early stage after 10 min.In the aging process,the precipitate particles with an initial average size of ~ 8 ?A increase with aging time at an energy of 9.60 ke V,while the increase with a slower rate is observed at an energy of 9.65 ke V as near the Zn absorption edge.展开更多
Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has...Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and lowresolution experimental data using computer simulations. Small-angle x-ray scattering(SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin.展开更多
The method of synchrotron radiation small-angle X-ray scattering (SR-SAXS) has been used to obtain structural information on the system of bis (2-ethylhexyl) sulfosuccinate (AOT)/H2O/isooctane. By using the Guinier pl...The method of synchrotron radiation small-angle X-ray scattering (SR-SAXS) has been used to obtain structural information on the system of bis (2-ethylhexyl) sulfosuccinate (AOT)/H2O/isooctane. By using the Guinier plot (Ln I (q) versus q(2)) on the data sets in a defined small q range (0.03-0.06 Angstrom (-1)), the gyration radius at different water/surfactant molar ratio, W-0, was obtained. With the increase of W-0, the gyration radius (R-g) increased at the range of 23.2 similar to 52.7 Angstrom.展开更多
The experimental investigation on the conformation of a thermotropic main-chain nematic polymer by small-angle X-ray scattering (SAXS) has been carried out. The average radius of gyration of the polymer has been deter...The experimental investigation on the conformation of a thermotropic main-chain nematic polymer by small-angle X-ray scattering (SAXS) has been carried out. The average radius of gyration of the polymer has been determined in nematic and isotropic state respectively. The experiment shows that the boundary between domains is not sharp but diffuse, and the diffuse-boundary thickness of the polymer as a function of temperature has been given.展开更多
This paper reports that at a newly constructed small-angle x-ray scattering station of Beijing Synchrotron Radia- tion Facility, the topological shape of ligand-free bovine serum albumin in solution has been investiga...This paper reports that at a newly constructed small-angle x-ray scattering station of Beijing Synchrotron Radia- tion Facility, the topological shape of ligand-free bovine serum albumin in solution has been investigated. An appropriate scattering curve is obtained and the calculated value of the gyration radius is 31.2~=t=0.25 ~_ (11=0.1 nm) which is co- incident with other ones' results. It finds that the low-resolution structure models obtained by making use of ab initio reconstruction methods are fitting the crystal structure of human serum albumin very well. All of these results perform the potential of the beamline to apply to structural biology studies. The characteristics, the defects, and the improving measures of the station in future are also discussed.展开更多
Small angle X-ray scattering has been used to study the variation of microstructure parameters in an Al-Zn-Mg-Cu-Li alloy aged at various temperatures for various durations. Coarsening of precipitates was studied by a...Small angle X-ray scattering has been used to study the variation of microstructure parameters in an Al-Zn-Mg-Cu-Li alloy aged at various temperatures for various durations. Coarsening of precipitates was studied by analyzing the curve of kinetics strength vs the cube of radius. The results show that the coarsening of precipitates conforms to LSW principle. In addition, the characteristic of s^3J(s) vs s curves was analyzed. The results show that the curves for samples aged at 160 ℃ for various durations(24, 48 and 96 h) have negative deviation, which maybe results in the formation of certain new precipitate. In the other aging treatment states, the curves conform to Porod principle which means there is sharp boundary between the precipitates and matrix.展开更多
The present work deals with a detailed analysis of the small-angle X-ray scattering of nanoporous atomistic models for amorphous germanium. Structures with spherical nanovoids, others with arbitrarily oriented ellipso...The present work deals with a detailed analysis of the small-angle X-ray scattering of nanoporous atomistic models for amorphous germanium. Structures with spherical nanovoids, others with arbitrarily oriented ellipsoidal ones, with monodisperse and polydisperse size distributions, were first generated. After relaxing the as-generated structure, we compute its radial distribution function, and then we deduce by the Fourier transform technique its X-ray scattering pattern. Using a smoothing procedure, the computed small-angle X-ray scattering patterns are corrected for the termination errors due to the finite size of the model, allowing so, for the first time at our best knowledge, a rigorous quantitative analysis of this scattering. The Guinier’s law is found to be valid irrespective of size and shape of the nanovoids over a scattering vector-range extending beyond the expected limit. A weighted combination of the Guinier’s forms accounts for well the nanovoid size distribution in the amorphous structure. The invariance of the Q-factor and its relationship to the void volume fraction are also confirmed. Our findings support then the quantitative analyses of available small-angle X-ray scattering data for amorphous germanium.展开更多
Polymeric nanocomposites of PS/PMMA/CdS and PS/PVC/CdS samples have been synthesized through dispersion solution casting technique. The nanoparrticles of CdS were prepared by simple chemical method using CdCl2 and H2S...Polymeric nanocomposites of PS/PMMA/CdS and PS/PVC/CdS samples have been synthesized through dispersion solution casting technique. The nanoparrticles of CdS were prepared by simple chemical method using CdCl2 and H2S gas produced from thiourea. The nanoscale morphology of the prepared polymeric nanocomposite samples is probed through small angle X-ray scattering (SAXS). The SAXS study reveals that CdS nanoparticles take place at voids position in the respective plymer blend matrix and exhibit their nano nature with very little tendency to agglomerates.展开更多
Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e....Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e. solid state physics, chemistry, engineering and life sciences thereby rendering the origin of the macroscopic functionalization of the various materials via correlation to its structural architecture on a nanometer length scale. The techniques constitute a system of linear equations, which can be treated by matrix theory. The study aims to analyze the significance of the solutions of the stated matrix equations by use of the so-called condition numbers first introduced by A. Turing, J. von Neumann and H. Goldstine. Special attention was given for the comparison with direct methods i.e. the Gaussian elimination method. The mathematical roots of ill-posed ASAXS equations preventing matrix inversion have been identified. In the framework of the theory of von Neumann and Goldstine the inversion of certain matrices constituted by ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s theory which starts from more general prerequisites, the principal minors of the same matrices approach singularity thereby imposing large errors on inversion. In conclusion both theories recommend for extremely ill-posed ASAXS problems avoiding inversion and the use of direct methods for instance Gaussian elimination.展开更多
The microstmcture evolution of plastic-bonded explosives (PBXs) after thermal stimulus plays a key role in PBX performance. In this paper, the nanoscale pores of thermal-treated octahydro-1,3,5,7-tetranitro-1,3,5,7 ...The microstmcture evolution of plastic-bonded explosives (PBXs) after thermal stimulus plays a key role in PBX performance. In this paper, the nanoscale pores of thermal-treated octahydro-1,3,5,7-tetranitro-1,3,5,7 tetrazocine (HMX)- based PBXs with different HMX particle sizes [approximately 40 (FLIP) and 100 μm (LHP)] were measured using small- angle X-ray scattering (SAXS). No obvious pore variations were found in the LHP samples heated at 160 ℃ for 6 h, whereas the amount of pores of FHP decreased when subjected to 160 ℃ for 6 h. At 180 ℃, the average pore radii of FHP and LHP decreased from approximately 45 nm to 25 nm, and the total pore volume increased distinctively because of phase transformation. The LHP sample reached a high level of pore content after being held at 180 ℃ for 1 h, whereas FHP required 3 h. Both FHP and LHP had relatively high pore volumes when subjected to 200 ℃ for 1 and 3 h.展开更多
The monodisperse polystyrene spheres are assembled into the colloidal crystal on the glass substrate by vertical deposition method, which is aimed at the so-called photonic crystal applications. The structural informa...The monodisperse polystyrene spheres are assembled into the colloidal crystal on the glass substrate by vertical deposition method, which is aimed at the so-called photonic crystal applications. The structural information of the bulk colloidal crystal is crucial for understanding the crystal growth mechanism and devel- oping the various applications of colloidal crystal. Small-angle X-ray scattering (SAXS) technique was used to obtain the bulk structure of the colloidal crystal at Beamline lW2A of BSRF. It is found that the SAXS pattern is sensitive to the relative orientation between the colloidal sample and the incident X-ray direction. The crystal lattice was well distinguished and determined by the SAXS data.展开更多
基金Supported by the National Basic Research Program of China(Nos.2011CB911104,2011CB606104,and 2011CB605604)National Natural Science Foundation of China(Nos.11305249,11005143,50903089,51273210,11405259,51303200,and 11305242)Knowledge Innovation Program of Chinese Academy of Sciences
文摘Beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF) is dedicated to studying the microstructure and dynamic processes of polymers, nanomaterials, mesoporous materials, colloids, liquid crystals,metal materials, etc. At present, SAXS, wide angle X-ray scattering(WAXS), simultaneous SAXS/WAXS,grazing incident SAXS, and anomalous SAXS techniques are available for end user to conduct diverse experiments at this beamline. The sample-to-detector distance is adjustable from 0.2 m to 5 m. The practicable q-range is 0.03–3.6 nm-1at incident X-ray of 10 ke V for conventional SAXS whilst a continuous q-region of0.06–33 nm-1can be achieved in simultaneous SAXS/WAXS mode. Time-resolved SAXS measurements in sub-second level was achieved by the beamline upgrating in 2013. This paper gives detailed descriptions about the status, performance and applications of the SAXS beamline.
基金financially supported by the National Natural Science Foundation of China(No.51004018)
文摘The aging behavior of Al-Cu-Mg-Ag alloys with high Cu/Mg was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) using synchrotron radiation. TEM study reveals that the major strengthening phases of the alloy after aging at 160?C for 10 h are Ω and less θ′. SAXS study shows that the scattering patterns are composed of several concentric circles at the beginning of aging process, which is replaced by the butterfly-wings scattering patterns with the increase of aging time. The butterfly-wings scattering patterns are composed of several branches. The angles between the branches are roughly equal to that between the habit planes of precipitates. The evolution of Guinier radius with aging time indicates the good coarsening resistance of the precipitates. The evolution of integrated intensity is consistent with the classical two-step precipitation process.
基金This research was supported by the National Key Fun-damental Research Project of China(No.G19990649)National“863”High Technology Program of China(No.2001 A A332030).
文摘The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scattering (SAXS).The results show that the precipitates are only a few nanorneters for both alloys ageing even at higher temperature of 160℃ for 72 h (4.44 and 5.82 nm, respectively). The maximum of the precipitate volume fraction increases with in creasing Zn content and is about 0.023-0.028 and 0.052-0.054, respectively. The coarsening of precipitate is consistent with LSW (Lifshitz-Slyozov-Wagner) model even at the initial stage where volume fraction is still varying.The activation energy of coarsening regime has been determined to be about 1.22±0.02 eV and 1.25±0.02 eV for alloys 7075 and 7055, respectively.
文摘The Dividing Distribution Function (DDF) method is one of the methods by which the particle size distribution of ultrafine powder can be evaluated from its small angle X-ray scattering data. In this paper, the stability of the solution obtained from DDF method has been investigated through optimizing the coefficient matrix, introducing a damping factor and a least square treatment. All calculations were accomplished with a microcomputer. It was shown that the average deviations of the size distribution obtained are not larger than the assigned random errors to the scattering intensities as long as the corresponding requirements are satisfied.
基金the National Basic Research Project-Macromolecular Condensed State the National Natural Science Foundation of China !(296330
文摘Small angle X-ray scattering (SAXS) was used to study the effect of dissolved CO2 on the conformation of polystyrene (PS) in PS/tetrahydrofuran(THF) solution at 308.15 K and at pressures up to 3 MPa. The cloud pressure and the expansion curve of the solution were also determined. The dependence of the conformation on pressure was discussed.
文摘In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.
文摘Synchrotron microfocus small angle X-ray scattering was used to investigate the nanostructure and microscopic variation of eggshells. It uses a microbeam allowing the ability to probe interactions between the organic and inorganic components at nanometer level and is ideal for mapping over small areas to obtain a detailed analysis of structural variations. Thin sections of eggshells were scanned from the shell membrane (inner) to the cuticle (outer) surface. The data collected was used to produce two-dimensional maps showing microscopic changes within the different layers of the eggshell. The structural alterations ap- parently could have implications at the macroscopic level of the resulting eggshell. As the organic matrix is embedded within the eggshell this may contribute to the variations observed in calcite crystal form and texture, Structural information obtained about a biomaterial at different length scales is important in relating the structure to its functional properties. This knowledge and the principles behind the formation of biomaterials could be used in the attempt of bioengineering new systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11005143,11405259,and 51274046)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China(Grant No.[2014]1685)
文摘In the present work,the precipitate compositions and precipitate amounts of these elements(including the size distribution,volume fraction,and inter-precipitate distance) on the Cu-containing 7000 series aluminum alloys(7150 and 7085 Al alloys),are investigated by anomalous small-angle x-ray scattering(ASAXS) at various energies.The scattering intensity of 7150 alloy with T6 aging treatment decreases as the incident x-ray energy approaches the Zn absorption edge from the lower energy side,while scattering intensity does not show a noticeable energy dependence near the Cu absorption edge.Similar results are observed in the 7085 alloy in an aging process(120℃) by employing in-situ ASAXS measurements,indicating that the precipitate compositions should include Zn element and should not be strongly related to Cu element at the early stage after 10 min.In the aging process,the precipitate particles with an initial average size of ~ 8 ?A increase with aging time at an energy of 9.60 ke V,while the increase with a slower rate is observed at an energy of 9.65 ke V as near the Zn absorption edge.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2013CB910203 and 2011CB911104)the National Natural Science Foundation of China(Grant No.31270760)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB08030102)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20113402120013)
文摘Elucidating the structure of large biomolecules such as multi-domain proteins or protein complexes is challenging due to their high flexibility in solution. Recently, an "integrative structural biology" approach has been proposed, which aims to determine the protein structure and characterize protein flexibility by combining complementary high- and lowresolution experimental data using computer simulations. Small-angle x-ray scattering(SAXS) is an efficient technique that can yield low-resolution structural information, including protein size and shape. Here, we review computational methods that integrate SAXS with other experimental datasets for structural modeling. Finally, we provide a case study of determination of the structure of a protein complex formed between the tandem SH3 domains in c-Cb1-associated protein and the proline-rich loop in human vinculin.
文摘The method of synchrotron radiation small-angle X-ray scattering (SR-SAXS) has been used to obtain structural information on the system of bis (2-ethylhexyl) sulfosuccinate (AOT)/H2O/isooctane. By using the Guinier plot (Ln I (q) versus q(2)) on the data sets in a defined small q range (0.03-0.06 Angstrom (-1)), the gyration radius at different water/surfactant molar ratio, W-0, was obtained. With the increase of W-0, the gyration radius (R-g) increased at the range of 23.2 similar to 52.7 Angstrom.
文摘The experimental investigation on the conformation of a thermotropic main-chain nematic polymer by small-angle X-ray scattering (SAXS) has been carried out. The average radius of gyration of the polymer has been determined in nematic and isotropic state respectively. The experiment shows that the boundary between domains is not sharp but diffuse, and the diffuse-boundary thickness of the polymer as a function of temperature has been given.
基金Project supported by the Chinese Academy of Science Innovation Key Project (Grant No KJCX2-SW-N06)
文摘This paper reports that at a newly constructed small-angle x-ray scattering station of Beijing Synchrotron Radia- tion Facility, the topological shape of ligand-free bovine serum albumin in solution has been investigated. An appropriate scattering curve is obtained and the calculated value of the gyration radius is 31.2~=t=0.25 ~_ (11=0.1 nm) which is co- incident with other ones' results. It finds that the low-resolution structure models obtained by making use of ab initio reconstruction methods are fitting the crystal structure of human serum albumin very well. All of these results perform the potential of the beamline to apply to structural biology studies. The characteristics, the defects, and the improving measures of the station in future are also discussed.
文摘Small angle X-ray scattering has been used to study the variation of microstructure parameters in an Al-Zn-Mg-Cu-Li alloy aged at various temperatures for various durations. Coarsening of precipitates was studied by analyzing the curve of kinetics strength vs the cube of radius. The results show that the coarsening of precipitates conforms to LSW principle. In addition, the characteristic of s^3J(s) vs s curves was analyzed. The results show that the curves for samples aged at 160 ℃ for various durations(24, 48 and 96 h) have negative deviation, which maybe results in the formation of certain new precipitate. In the other aging treatment states, the curves conform to Porod principle which means there is sharp boundary between the precipitates and matrix.
文摘The present work deals with a detailed analysis of the small-angle X-ray scattering of nanoporous atomistic models for amorphous germanium. Structures with spherical nanovoids, others with arbitrarily oriented ellipsoidal ones, with monodisperse and polydisperse size distributions, were first generated. After relaxing the as-generated structure, we compute its radial distribution function, and then we deduce by the Fourier transform technique its X-ray scattering pattern. Using a smoothing procedure, the computed small-angle X-ray scattering patterns are corrected for the termination errors due to the finite size of the model, allowing so, for the first time at our best knowledge, a rigorous quantitative analysis of this scattering. The Guinier’s law is found to be valid irrespective of size and shape of the nanovoids over a scattering vector-range extending beyond the expected limit. A weighted combination of the Guinier’s forms accounts for well the nanovoid size distribution in the amorphous structure. The invariance of the Q-factor and its relationship to the void volume fraction are also confirmed. Our findings support then the quantitative analyses of available small-angle X-ray scattering data for amorphous germanium.
文摘Polymeric nanocomposites of PS/PMMA/CdS and PS/PVC/CdS samples have been synthesized through dispersion solution casting technique. The nanoparrticles of CdS were prepared by simple chemical method using CdCl2 and H2S gas produced from thiourea. The nanoscale morphology of the prepared polymeric nanocomposite samples is probed through small angle X-ray scattering (SAXS). The SAXS study reveals that CdS nanoparticles take place at voids position in the respective plymer blend matrix and exhibit their nano nature with very little tendency to agglomerates.
文摘Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e. solid state physics, chemistry, engineering and life sciences thereby rendering the origin of the macroscopic functionalization of the various materials via correlation to its structural architecture on a nanometer length scale. The techniques constitute a system of linear equations, which can be treated by matrix theory. The study aims to analyze the significance of the solutions of the stated matrix equations by use of the so-called condition numbers first introduced by A. Turing, J. von Neumann and H. Goldstine. Special attention was given for the comparison with direct methods i.e. the Gaussian elimination method. The mathematical roots of ill-posed ASAXS equations preventing matrix inversion have been identified. In the framework of the theory of von Neumann and Goldstine the inversion of certain matrices constituted by ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s theory which starts from more general prerequisites, the principal minors of the same matrices approach singularity thereby imposing large errors on inversion. In conclusion both theories recommend for extremely ill-posed ASAXS problems avoiding inversion and the use of direct methods for instance Gaussian elimination.
基金supported by the National Natural Science Foundation of China(Grant Nos.11205137,11079043,and 11302199)
文摘The microstmcture evolution of plastic-bonded explosives (PBXs) after thermal stimulus plays a key role in PBX performance. In this paper, the nanoscale pores of thermal-treated octahydro-1,3,5,7-tetranitro-1,3,5,7 tetrazocine (HMX)- based PBXs with different HMX particle sizes [approximately 40 (FLIP) and 100 μm (LHP)] were measured using small- angle X-ray scattering (SAXS). No obvious pore variations were found in the LHP samples heated at 160 ℃ for 6 h, whereas the amount of pores of FHP decreased when subjected to 160 ℃ for 6 h. At 180 ℃, the average pore radii of FHP and LHP decreased from approximately 45 nm to 25 nm, and the total pore volume increased distinctively because of phase transformation. The LHP sample reached a high level of pore content after being held at 180 ℃ for 1 h, whereas FHP required 3 h. Both FHP and LHP had relatively high pore volumes when subjected to 200 ℃ for 1 and 3 h.
基金Supported by National Natural Science Foundation of China (10832011)Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-YW-L08)
文摘The monodisperse polystyrene spheres are assembled into the colloidal crystal on the glass substrate by vertical deposition method, which is aimed at the so-called photonic crystal applications. The structural information of the bulk colloidal crystal is crucial for understanding the crystal growth mechanism and devel- oping the various applications of colloidal crystal. Small-angle X-ray scattering (SAXS) technique was used to obtain the bulk structure of the colloidal crystal at Beamline lW2A of BSRF. It is found that the SAXS pattern is sensitive to the relative orientation between the colloidal sample and the incident X-ray direction. The crystal lattice was well distinguished and determined by the SAXS data.