期刊文献+
共找到215,928篇文章
< 1 2 250 >
每页显示 20 50 100
Transfer RNA-derived small RNA serves as potential non-invasive diagnostic marker and a novel therapeutic target for acute pancreatitis
1
作者 Jing Zhang Chun-Lin Ou 《World Journal of Gastroenterology》 SCIE CAS 2025年第1期152-156,共5页
Transfer RNA(tRNA)-derived fragments,a new type of tRNA-derived small RNA(tsRNA),can be cleaved from tRNA by enzymes to regulate target gene expression at the transcriptional and translational levels.tsRNAs are not on... Transfer RNA(tRNA)-derived fragments,a new type of tRNA-derived small RNA(tsRNA),can be cleaved from tRNA by enzymes to regulate target gene expression at the transcriptional and translational levels.tsRNAs are not only degradation fragments but also have biological functions,including those in immune inflammation,metabolic disorders,and cell death.tsRNA dysregulation is closely associated with multiple diseases,including various cancers and acute pancreatitis(AP).AP is a common gastrointestinal disease,and its incidence increases annually.AP development is associated with tsRNAs,which regulate cell injury and induce inflammation,especially pyroptosis and ferroptosis.Notably,serum tRF36 has the potential to serve as a non-invasive diagnostic biomarker and leads to pancreatic acinar cell ferroptosis causing inflammation to promote AP.We show the characteristics of tsRNAs and their diagnostic value and function in AP,and discuss the potential opportunities and challenges of using tsRNAs in clinical applications and research. 展开更多
关键词 Transfer RNA derived small RNAs Acute pancreatitis Liquid biopsy BIOMARKER Cell pyroptosis Ferroptosis
下载PDF
A Real-Time Small Target Vehicle Detection Algorithm with an Improved YOLOv5m Network Model 被引量:1
2
作者 Yaoyao Du Xiangkui Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第1期303-327,共25页
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc... To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing. 展开更多
关键词 Vehicle detection YOLOv5m small target channel pruning CARAFE
下载PDF
Development of small molecule drugs targeting immune checkpoints 被引量:1
3
作者 Luoyi Chen Xinchen Zhao +3 位作者 Xiaowei Liu Yujie Ouyang Chuan Xu Ying Shi 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第5期382-399,共18页
Immune checkpoint inhibitors(ICIs)are used to relieve and refuel anti-tumor immunity by blocking the interaction,transcription,and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune chec... Immune checkpoint inhibitors(ICIs)are used to relieve and refuel anti-tumor immunity by blocking the interaction,transcription,and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune checkpoints.Thousands of small molecule drugs or biological materials,especially antibody-based ICIs,are actively being studied and antibodies are currently widely used.Limitations,such as anti-tumor efficacy,poor membrane permeability,and unneglected tolerance issues of antibody-based ICIs,remain evident but are thought to be overcome by small molecule drugs.Recent structural studies have broadened the scope of candidate immune checkpoint molecules,as well as innovative chemical inhibitors.By way of comparison,small molecule drug-based ICIs represent superior oral bioavailability and favorable pharmacokinetic features.Several ongoing clinical trials are exploring the synergetic effect of ICIs and other therapeutic strategies based on multiple ICI functions,including immune regulation,anti-angiogenesis,and cell cycle regulation.In this review we summarized the current progression of small molecule ICIs and the mechanism underlying immune checkpoint proteins,which will lay the foundation for further exploration. 展开更多
关键词 Immune checkpoints small molecule drugs programmed death protein 1 CD47 signal-regulatory proteinα
下载PDF
Ghost-YOLO v8:An Attention-Guided Enhanced Small Target Detection Algorithm for Floating Litter on Water Surfaces
4
作者 Zhongmin Huangfu Shuqing Li Luoheng Yan 《Computers, Materials & Continua》 SCIE EI 2024年第9期3713-3731,共19页
Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightwe... Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightweight Ghost-YOLO(You Only Look Once)v8 algorithm.The algorithmintegrates advanced attention mechanisms and a smalltarget detection head to significantly enhance detection performance and efficiency.Firstly,an SE(Squeeze-and-Excitation)mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization.This mechanism models feature channel dependencies,enabling adaptive adjustment of channel importance,thereby improving recognition of floating litter targets.Secondly,a 160×160 small-target detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target scales.This design enhances the fusion of deep and shallow semantic information,improving small target feature representation and enabling better capture and identification of tiny floating litter.Thirdly,to balance performance and efficiency,the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.Additionally,a novel C2fGhost(CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost)module is introduced to further reduce network parameters.Lastly,to address the challenge of occlusion,a newloss function,WIoU(Wise Intersection over Union)v3 incorporating a flexible and non-monotonic concentration approach,is adopted to improve detection rates for surface floating litter.The outcomes of the experiments demonstrate that the Ghost-YOLO v8 model proposed in this paper performs well in the dataset Marine,significantly enhances precision and recall by 3.3 and 7.6 percentage points,respectively,in contrast with the base model,mAP@0.5 and mAP 0.5:0.95 improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88MB,the FPS value hardly decreases,and the efficient real-time identification of floating debris on the water’s surface can be achieved costeffectively. 展开更多
关键词 YOLO v8 surface floating litter target detection attention mechanism small target detection head ghostnet loss function
下载PDF
Adversarial Defense Technology for Small Infrared Targets
5
作者 Tongan Yu Yali Xue +2 位作者 Yiming He Shan Cui Jun Hong 《Computers, Materials & Continua》 SCIE EI 2024年第10期1235-1250,共16页
With the rapid development of deep learning-based detection algorithms,deep learning is widely used in the field of infrared small target detection.However,well-designed adversarial samples can fool human visual perce... With the rapid development of deep learning-based detection algorithms,deep learning is widely used in the field of infrared small target detection.However,well-designed adversarial samples can fool human visual perception,directly causing a serious decline in the detection quality of the recognition model.In this paper,an adversarial defense technology for small infrared targets is proposed to improve model robustness.The adversarial samples with strong migration can not only improve the generalization of defense technology,but also save the training cost.Therefore,this study adopts the concept of maximizing multidimensional feature distortion,applying noise to clean samples to serve as subsequent training samples.On this basis,this study proposes an inverse perturbation elimination method based on Generative Adversarial Networks(GAN)to realize the adversarial defense,and design the generator and discriminator for infrared small targets,aiming to make both of them compete with each other to continuously improve the performance of the model,find out the commonalities and differences between the adversarial samples and the original samples.Through experimental verification,our defense algorithm is not only able to cope with multiple attacks but also performs well on different recognition models compared to commonly used defense algorithms,making it a plug-and-play efficient adversarial defense technique. 展开更多
关键词 Adversarial defense adversarial robustness small infrared targets transferable perturbation GAN
下载PDF
Improved Weighted Local Contrast Method for Infrared Small Target Detection
6
作者 Pengge Ma Jiangnan Wang +3 位作者 Dongdong Pang Tao Shan Junling Sun Qiuchun Jin 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期19-27,共9页
In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted... In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV). 展开更多
关键词 infrared small target unmanned aerial vehicles(UAV) local contrast target detection
下载PDF
An Efficient Radar Detection Method of Maneuvering Small Targets
7
作者 Hongchi Zhang Yuan Feng Shengheng Liu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期1-8,共8页
Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate ener... Detection of maneuvering small targets has always been an important yet challenging task for radar signal processing.One primary reason is that target variable motions within coherent processing interval generate energy migrations across multiple resolution bins,which severely deteriorate the parameter estimation performance.A coarse-to-fine strategy for the detection of maneuvering small targets is proposed.Integration of small points segmented coherently is performed first,and then an optimal inter-segment integration is utilized to derive the coarse estimation of the chirp rate.Sparse fractional Fourier transform(FrFT)is then employed to refine the coarse estimation at a significantly reduced computational complexity.Simulation results verify the proposed scheme that achieves an efficient and reliable maneuvering target detection with-16dB input signal-to-noise ratio(SNR),while requires no exact a priori knowledge on the motion parameters. 展开更多
关键词 small target CHIRP sparse fractional Fourier transform(FrFT)
下载PDF
Improved Small Target Detection Method for SAR Image Based on YOLOv7
8
作者 YANG Ke SI Zhan-jun +1 位作者 ZHANG Ying-xue SHI Jin-yu 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期53-62,共10页
In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an... In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection. 展开更多
关键词 small target detection Synthetic aperture radar YOLOv7 DyHead module Switchable Around Convolution
下载PDF
Small particle drug-eluting beads-transarterial chemoembolization combined with targeted therapy in the clinical treatment of unresectable liver cancer
9
作者 Jing-Song Qi Peng Zhao +2 位作者 Xiao-Bo Zhao Yong-Li Zhao Ying-Chang Guo 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第10期4157-4165,共9页
BACKGROUND Liver cancer is a highly malignant tumor with significant clinical impact.Chemotherapy alone often yields suboptimal outcomes in both the short and long term,characterized by high rates of local recurrence ... BACKGROUND Liver cancer is a highly malignant tumor with significant clinical impact.Chemotherapy alone often yields suboptimal outcomes in both the short and long term,characterized by high rates of local recurrence and distant metastasis,leading to a poor long-term prognosis.AIM To evaluate the clinical efficacy of small particle drug-eluting beads-transarterial chemoembolization(DEB-TACE)combined with targeted therapy for the treatment of unresectable liver cancer.METHODS We analyzed clinical data from 74 patients with unresectable liver cancer admitted between January 2019 and December 2020.Based on the different treatment regimens administered,patients were divided into the control(36 patients receiving sorafenib alone)and joint(38 patients receiving small particle DEB-TACE combined with sorafenib)groups.We compared liver function indicators[alanine aminotransferase(ALT),aspartate aminotransferase(AST),total bilirubin(TBIL),albumin(ALB)]and serum tumor markers[alpha fetoprotein(AFP)]before and after treatment in both groups.Short-term efficacy measures[complete response(CR),partial response,progression disease,stable disease,objective response rate(ORR),and disease control rate(DCR)]were assessed post-treatment.Long-term follow-up evaluated median overall survival(OS),progression-free survival(PFS),and adverse reaction rates between the two groups.RESULTS One month post-treatment,the joint group demonstrated significantly higher rates of CR,ORR,and DCR compared to the control group(P<0.05).Three days after treatment,the joint group showed elevated levels of ALT,AST,and TBIL but reduced levels of ALB and AFP compared to the control group(P<0.05).The median OS was 18 months for the control group and 25 months for the joint group,while the median PFS was 15 months for the control group and 22 months for the joint group,with significant differences observed(log-rank:χ2=7.824,6.861,respectively;P=0.005,0.009,respectively).The incidence of adverse reactions was not significantly different between the groups(P>0.05).CONCLUSION The combination of small particle DEB-TACE and sorafenib significantly improves both short-and long-term outcomes in the treatment of unresectable liver cancer while preserving liver function. 展开更多
关键词 small particle Drug-eluting beads-transarterial chemoembolization SORAFENIB TREATMENT Unresectable liver cancer
下载PDF
Research on fast detection method of infrared small targets under resourceconstrained conditions
10
作者 ZHANG Rui LIU Min LI Zheng 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期582-587,共6页
Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ... Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions. 展开更多
关键词 infrared UAV image fast small object detection low impedance loss function
下载PDF
Exosome-based strategy against colon cancer using small interfering RNA-loaded vesicles targeting soluble a proliferationinducing ligand
11
作者 Hyung-Jin Kim Do Sang Lee +4 位作者 Jung Hyun Park Ha-Eun Hong Ho Joong Choi Ok-Hee Kim Say-June Kim 《World Journal of Stem Cells》 SCIE 2024年第11期956-973,共18页
BACKGROUND Recent advancements in nanomedicine have highlighted the potential of exosome(Ex)-based therapies,utilizing naturally derived nanoparticles,as a novel approach to targeted cancer treatment.AIM To explore th... BACKGROUND Recent advancements in nanomedicine have highlighted the potential of exosome(Ex)-based therapies,utilizing naturally derived nanoparticles,as a novel approach to targeted cancer treatment.AIM To explore the targetability and anticancer effectiveness of small interfering peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 RNA(siPIN1)-loaded soluble a proliferation-inducing ligand(sAPRIL)-targeted Exs(designated as tEx[p])in the treatment of colon cancer models.METHODS tEx was generated by harvesting conditioned media from adipose-derived stem cells that had undergone transformation using pDisplay vectors encoding sAPRIL-binding peptide sequences.Subsequently,tEx[p]were created by incorporating PIN1 siRNA into the tEx using the Exofect kit.The therapeutic efficacy of these Exs was evaluated using both in vitro and in vivo models of colon cancer.RESULTS The tEx[p]group exhibited superior anticancer effects in comparison to other groups,including tEx,Ex[p],and Ex,demonstrated by the smallest tumor size,the slowest tumor growth rate,and the lightest weight of the excised tumors observed in the tEx[p]group(P<0.05).Moreover,analyses of the excised tumor tissues,using western blot analysis and immunohistochemical staining,revealed that tEx[p]treatment resulted in the highest increase in Ecadherin expression and the most significant reduction in the mesenchymal markers Vimentin and Snail(P<0.05),suggesting a more effective inhibition of epithelial-mesenchymal transition tEx[p],likely due to the enhanced delivery of siPIN1.CONCLUSION The use of bioengineered Exs targeting sAPRIL and containing siPIN1 demonstrated superior efficacy in inhibiting tumor growth and epithelial-mesenchymal transition,highlighting their potential as a therapeutic strategy for colon cancer. 展开更多
关键词 Colon cancer Drug delivery system EXOSOME Soluble a proliferation-inducing ligand Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 targeted therapy
下载PDF
Multilevel analysis of the central-peripheral-target organ pathway:contributing to recovery after peripheral nerve injury
12
作者 Xizi Song Ruixin Li +6 位作者 Xiaolei Chu Qi Li Ruihua Li Qingwen Li Kai-Yu Tong Xiaosong Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS 2025年第10期2807-2822,共16页
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes... Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery. 展开更多
关键词 central nervous system central peripheral target organ multilevel pathological analysis nerve regeneration peripheral nerve injury peripheral nervous system target organs therapeutic approach
下载PDF
Small extracellular vesicles derived from cerebral endothelial cells with elevated microRNA 27a promote ischemic stroke recovery
13
作者 Yi Zhang Zhongwu Liu +7 位作者 Michael Chopp Michael Millman Yanfeng Li Pasquale Cepparulo Amy Kemper Chao Li Li Zhang Zheng Gang Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第1期224-233,共10页
Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)iso... Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling. 展开更多
关键词 axonal remodeling cerebral endothelial cells exosomes miR-27a mitochondria Semaphorin 6A small extracellular vesicles stroke
下载PDF
Small cell lung cancer with peripheral neuropathy as the first symptom:Two case reports
14
作者 Man Luo Xiao-Xi Lu +1 位作者 Dan-Yang Meng Jin Hu 《World Journal of Clinical Cases》 SCIE 2025年第9期30-40,共11页
BACKGROUND Small cell lung cancer(SCLC)is the most malignant type of lung cancer.Even in the latent period and early stage of the tumor,SCLC is prone to produce distant metastases with complex and diverse clinical man... BACKGROUND Small cell lung cancer(SCLC)is the most malignant type of lung cancer.Even in the latent period and early stage of the tumor,SCLC is prone to produce distant metastases with complex and diverse clinical manifestations.SCLC is most closely related to paraneoplastic syndrome,and some cases present as paraneoplastic peripheral neuropathy(PPN).PPN in SCLC appears early,lacks specificity,and often occurs before diagnosis of the primary tumor.It is easy to be misdiagnosed as a primary disease of the nervous system,leading to missed diagnosis and delayed diagnosis and treatment.CASE SUMMARY This paper reports two cases of SCLC with limb weakness as the first symptom.The first symptoms of one patient were rash,limb weakness,and abnormal electromyography.The patient was repeatedly referred to the hospital for limb weakness and rash for>1 year,during which time,treatment with hormones and immunosuppressants did not lead to significant improvement,and the condition gradually aggravated.The patient was later diagnosed with SCLC,and the dyskinesia did not worsen as the dermatomyositis improved after antineoplastic and hormone therapy.The second case presented with limb numbness and weakness as the first symptom,but the patient did not pay attention to it.Later,the patient was diagnosed with SCLC after facial edema caused by tumor thrombus invading the vein.However,he was diagnosed with extensive SCLC and died 1 year after diagnosis.CONCLUSION The two cases had PPN and abnormal electromyography,highlighting its correlation with early clinical indicators of SCLC. 展开更多
关键词 Paraneoplastic peripheral neuropathy small cell lung cancer Peripheral neuropathy ELECTROMYOGRAPHY DERMATOMYOSITIS Case report
下载PDF
Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury
15
作者 Tong Li Hui-Min Xing +4 位作者 Hai-Dong Qian Qiao Gao Sheng-Lan Xu Hua Ma Zai-Long Chi 《Neural Regeneration Research》 SCIE CAS 2025年第2期587-597,共11页
Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit... Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy. 展开更多
关键词 EXOSOME miRNA neural progenitor cell NEURODEGENERATION NEUROINFLAMMATION neuroprotection optic nerve crush optic neuropathy retinal ganglion cell small extracellular vesicles
下载PDF
Pyroptosis,ferroptosis,and autophagy in spinal cord injury:regulatory mechanisms and therapeutic targets
16
作者 Qingcong Zheng Du Wang +1 位作者 Rongjie Lin Weihong Xu 《Neural Regeneration Research》 SCIE CAS 2025年第10期2787-2806,共20页
Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are ne... Regulated cell death is a form of cell death that is actively controlled by biomolecules.Several studies have shown that regulated cell death plays a key role after spinal cord injury.Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords.Autophagy,a complex form of cell death that is interconnected with various regulated cell death mechanisms,has garnered significant attention in the study of spinal cord injury.This injury triggers not only cell death but also cellular survival responses.Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis,ferroptosis,and autophagy.Therefore,this review aims to comprehensively examine the mechanisms underlying regulated cell deaths,the signaling pathways that modulate these mechanisms,and the potential therapeutic targets for spinal cord injury.Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury.Moreover,a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury. 展开更多
关键词 AUTOPHAGY cell death ferroptosis INFLAMMATION pathological mechanisms PYROPTOSIS regulated cell death regulatory pathways spinal cord injury therapeutic targets
下载PDF
Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases
17
作者 Xinyu Yang Xiangyu Gao +2 位作者 Xiaofan Jiang Kangyi Yue Peng Luo 《Neural Regeneration Research》 SCIE CAS 2025年第11期3076-3094,共19页
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–b... Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis engineered extracellular vesicles GLIOMA ischemic stroke neurological diseases Parkinson's disease PSYCHOSIS targeted drug delivery traumatic brain injury
下载PDF
Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching
18
作者 Jangampalli Adi Pradeepkiran Priyanka Rawat +2 位作者 Arubala P.Reddy Erika Orlov PHemachandra Reddy 《Neural Regeneration Research》 SCIE CAS 2025年第9期2624-2632,共9页
The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are... The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition. 展开更多
关键词 diethyl(3 4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ) hippocampal neuronal cells HT22 neurite outgrowth neuronal development small molecule
下载PDF
Subretinal fibrosis secondary to neovascular age-related macular degeneration:mechanisms and potential therapeutic targets
19
作者 Jingxiang Zhang Xia Sheng +3 位作者 Quanju Ding Yujun Wang Jiwei Zhao Jingfa Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第2期378-393,共16页
Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central ... Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis. 展开更多
关键词 choroidal neovascularization epithelial-mesenchymal transition mesenchymal transition MYOFIBROBLAST neovascular age-related macular degeneration submacular fibrosis subretinal fibrosis therapeutic targets transforming growth factor-β vascular endothelial growth factor
下载PDF
基于MobileNetV3Small-ECA的水稻病害轻量级识别研究 被引量:6
20
作者 袁培森 欧阳柳江 +1 位作者 翟肇裕 田永超 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期253-262,共10页
为实现水稻病害的轻量化识别与检测,使用ECA注意力机制改进MobileNetV3Small模型,并使用共享参数迁移学习对水稻病害进行智能化轻量级识别和检测。在PlantVillage数据集上进行预训练,将预训练得到的共享参数迁移到对水稻病害识别模型上... 为实现水稻病害的轻量化识别与检测,使用ECA注意力机制改进MobileNetV3Small模型,并使用共享参数迁移学习对水稻病害进行智能化轻量级识别和检测。在PlantVillage数据集上进行预训练,将预训练得到的共享参数迁移到对水稻病害识别模型上微调优化。在开源水稻病害数据集上进行试验测试,试验结果表明,在非迁移学习下,识别准确率达到97.47%,在迁移学习下识别准确率达到99.92%,同时参数量减少26.69%。其次,通过Grad-CAM进行可视化,本文方法与其他注意力机制CBAM和SENET相比,ECA模块生成的结果与图像中病斑的位置和颜色更加一致,表明网络可以更好地聚焦水稻病害的特征,并且通过可视化和各水稻病害分析了误分类原因。本文方法实现了水稻病害识别模型的轻量化,使其能够在移动设备等资源受限的场景中部署,达到快速、高效、便携的目的。同时开发了基于Android的水稻病害识别系统,方便于在边缘端进行水稻病害识别分析。 展开更多
关键词 水稻病害识别 迁移学习 高效通道注意力机制 MobileNetV3small 移动端部署
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部