There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote...There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote successful fabrication of small-diameter artificial blood vessels.From a physical perspective,the internal oriented structures of natural blood vessels plays an important role in guiding the directional growth of cells,improving the blood flow environment,and promoting the regeneration of vascular tissue.In this review,the effects of the oriented structures on cells,including endothelial cells(ECs),smooth muscle cells(SMCs)and stem cells,as well as the effect of the oriented structures on hemodynamics and vascular tissue remodeling and regeneration are introduced.Various forms of oriented structures(fibers,grooves,channels,etc.)and their construction methods are also reviewed.Conclusions and future perspectives are given.It is expected to give some references to relevant researches.展开更多
The β-hydroxybutyrate and β-hydroxyvalerate copolymers( PHBV) /polylactic acid( PLA) is a new biocompatible material,which is developed through bacterial fermentation in vivo systems.The PHBV / PLA material could be...The β-hydroxybutyrate and β-hydroxyvalerate copolymers( PHBV) /polylactic acid( PLA) is a new biocompatible material,which is developed through bacterial fermentation in vivo systems.The PHBV / PLA material could be used to make continuous filaments.However,features of artificial blood vessels,especially small diameter vascular grafts made of PHVB / PLA materials are not known.This research are to evaluate and improve weavability of the PHBV / PLA material, and to explore feasibility of using it in artificial blood vessels.Preliminary results showed that weavability of PHBV / PLV was not good,but its weavability could be improved by using methods of weak chemical,such as sizing.In this research,scanning electron microscope( SEM) was adopted to evaluate weavability of PHBV / PLV after sizing and observe surfaces of yarns and fabrics.Also,in order to set proper parameters in heat settings,differential scanning calorimetry( DSC) was used to identify glass transition temperature.展开更多
There has been an increasing demand for bioengineered blood vessels for utilization in both regenerative medicine and drug screening.However,the availability of a true bioengineered vascular graft remains limited.Thre...There has been an increasing demand for bioengineered blood vessels for utilization in both regenerative medicine and drug screening.However,the availability of a true bioengineered vascular graft remains limited.Three-dimensional(3D)bioprinting presents a potential approach for fabricating blood vessels or vascularized tissue constructs of various architectures and sizes for transplantation and regeneration.In this review,we summarize the basic biology of different blood vessels,as well as 3D bioprinting approaches and bioink designs that have been applied to fabricate vascular and vascularized tissue constructs,with a focus on small-diameter blood vessels.展开更多
In the research,a β-hydroxybutyrate and β-hydroxyvalerate copolymer(PHBV)/polylactic acid(PLA)artificial blood vessel was designed and developed,and it was also implanted in vivo for a period of time to observe its ...In the research,a β-hydroxybutyrate and β-hydroxyvalerate copolymer(PHBV)/polylactic acid(PLA)artificial blood vessel was designed and developed,and it was also implanted in vivo for a period of time to observe its biocompatibility and degradation performance.The results showed that the developed PHBV/PLA artificial blood vessel could be used to replace the natural blood vessel,but its degradation rate was too fast and the mechanical supporting force was insufficient.Thus,properties of the PHBV/PLA need to be further improved.展开更多
Compliance mismatch between artificial blood vessel and host vessel can cause abnormal hemodynamics and is the main mechanical trigger of intimal hyperplasia(IH)after transplantation.To explore the specific effects of...Compliance mismatch between artificial blood vessel and host vessel can cause abnormal hemodynamics and is the main mechanical trigger of intimal hyperplasia(IH)after transplantation.To explore the specific effects of the degree of compliance mismatch on hemodynamics,the concept of“compliance mismatch degree”was defined in this paper.Numerical results showed that when the compliance mismatch degree was less than-22.21%or more than 3.16%,the minimum WSS in the anastomotic site was less than the safety threshold of 0.5 Pa,which is easy to induce IH.In addition,the compliance mismatch caused different radial displacements first,which in turn affected the hemodynamics.Inspired by this,a novel medium convex artificial blood vessel was proposed,and the simulation results theoretically validated its desired effect on reducing the compliance mismatch.An increase of 0.22 mm in the diameter of the artificial blood vessel corresponded to a decrease of 0.88%in compliance mismatch degree.The feasibility of preparing real medium convex artificial blood vessel was also investigated.The PLCL medium convex artificial blood vessel with good mechanical properties was prepared by dip-coating and electrospinning composite method.These findings are valuable for the design and preparation of novel artificial blood vessel which can make up for the mismatch of compliance.展开更多
In this paper,a scaffold,which mimics the morphology and mechanical properties of a native blood vessel is reported.The scaffold was prepared by sequential bi-layer electrospinning on a rotating mandrel-type collector...In this paper,a scaffold,which mimics the morphology and mechanical properties of a native blood vessel is reported.The scaffold was prepared by sequential bi-layer electrospinning on a rotating mandrel-type collector.The tubular scaffolds(inner diameter 4 mm,length 3 cm)are composed of a polyurethane(PU)fibrous outer-layer and a gelatin-heparin fibrous inner-layer.They were fabricated by electrospinning technology,which enables control of the composition,structure,and mechanical properties of the scaffolds.The microstructure,fiber morphology and mechanical properties of the scaffolds were examined by means of scanning electron microscopy(SEM)and tensile tests.The PU/gelatinheparin tubular scaffolds have a porous structure.The scaffolds achieved a breaking strength(3.7±0.13 MPa)and an elongation at break(110±8%)that are appropriate for artificial blood vessels.When the scaffolds were immersed in water for 1 h,the breaking strength decreased slightly to 2.2±0.3 MPa,but the elongation at break increased to 14521%.In platelet adhesion tests the gelatin-heparin fibrous scaffolds showed a significant suppression of platelet adhesion.Heparin was released from the scaffolds at a fairly uniform rate during the period of 2nd day to 9th day.The scaffolds are expected to mimic the complex matrix structure of native arteries,and to have good biocompatibility as an artificial blood vessel owing to the heparin release.展开更多
Cardiovascular disease serves as the leading cause of death worldwide,with stenosis,occlusion,or severe dysfunction of blood vessels being its pathophysiological mechanism.Vascular replacement is the preferred surgica...Cardiovascular disease serves as the leading cause of death worldwide,with stenosis,occlusion,or severe dysfunction of blood vessels being its pathophysiological mechanism.Vascular replacement is the preferred surgical option for treating obstructed vascular structures.Due to the limited availability of healthy autologous vessels as well as the incidence of postoperative complications,there is an increasing demand for artificial blood vessels.From synthetic to natural,or a mixture of these components,numerous materials have been used to prepare artificial vascular grafts.Although synthetic grafts are more appropriate for use in medium to large-diameter vessels,they fail when replacing small-diameter vessels.Tissue-engineered vascular grafts are very likely to be an ideal alternative to autologous grafts in small-diameter vessels and are worthy of further investigation.However,a multitude of problems remain that must be resolved before they can be used in biomedical applications.Accordingly,this review attempts to describe these problems and provide a discussion of the generation of artificial blood vessels.In addition,we deliberate on current state-of-the-art technologies for creating artificial blood vessels,including advances in materials,fabrication techniques,various methods of surface modification,as well as preclinical and clinical applications.Furthermore,the evaluation of grafts both in vivo and in vitro,mechanical properties,challenges,and directions for further research are also discussed.展开更多
文摘There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote successful fabrication of small-diameter artificial blood vessels.From a physical perspective,the internal oriented structures of natural blood vessels plays an important role in guiding the directional growth of cells,improving the blood flow environment,and promoting the regeneration of vascular tissue.In this review,the effects of the oriented structures on cells,including endothelial cells(ECs),smooth muscle cells(SMCs)and stem cells,as well as the effect of the oriented structures on hemodynamics and vascular tissue remodeling and regeneration are introduced.Various forms of oriented structures(fibers,grooves,channels,etc.)and their construction methods are also reviewed.Conclusions and future perspectives are given.It is expected to give some references to relevant researches.
文摘The β-hydroxybutyrate and β-hydroxyvalerate copolymers( PHBV) /polylactic acid( PLA) is a new biocompatible material,which is developed through bacterial fermentation in vivo systems.The PHBV / PLA material could be used to make continuous filaments.However,features of artificial blood vessels,especially small diameter vascular grafts made of PHVB / PLA materials are not known.This research are to evaluate and improve weavability of the PHBV / PLA material, and to explore feasibility of using it in artificial blood vessels.Preliminary results showed that weavability of PHBV / PLV was not good,but its weavability could be improved by using methods of weak chemical,such as sizing.In this research,scanning electron microscope( SEM) was adopted to evaluate weavability of PHBV / PLV after sizing and observe surfaces of yarns and fabrics.Also,in order to set proper parameters in heat settings,differential scanning calorimetry( DSC) was used to identify glass transition temperature.
基金funding from the US National Institutes of Health(R00CA201603,R21EB025270,R21EB026175,R01EB028143)and the Brigham Research Institute.
文摘There has been an increasing demand for bioengineered blood vessels for utilization in both regenerative medicine and drug screening.However,the availability of a true bioengineered vascular graft remains limited.Three-dimensional(3D)bioprinting presents a potential approach for fabricating blood vessels or vascularized tissue constructs of various architectures and sizes for transplantation and regeneration.In this review,we summarize the basic biology of different blood vessels,as well as 3D bioprinting approaches and bioink designs that have been applied to fabricate vascular and vascularized tissue constructs,with a focus on small-diameter blood vessels.
基金"111 Project" Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘In the research,a β-hydroxybutyrate and β-hydroxyvalerate copolymer(PHBV)/polylactic acid(PLA)artificial blood vessel was designed and developed,and it was also implanted in vivo for a period of time to observe its biocompatibility and degradation performance.The results showed that the developed PHBV/PLA artificial blood vessel could be used to replace the natural blood vessel,but its degradation rate was too fast and the mechanical supporting force was insufficient.Thus,properties of the PHBV/PLA need to be further improved.
基金This work was supported by the Natural Science Foundation for Key Program of Jiangsu Higher Education Institutions,China[Nos.19KJA610004].
文摘Compliance mismatch between artificial blood vessel and host vessel can cause abnormal hemodynamics and is the main mechanical trigger of intimal hyperplasia(IH)after transplantation.To explore the specific effects of the degree of compliance mismatch on hemodynamics,the concept of“compliance mismatch degree”was defined in this paper.Numerical results showed that when the compliance mismatch degree was less than-22.21%or more than 3.16%,the minimum WSS in the anastomotic site was less than the safety threshold of 0.5 Pa,which is easy to induce IH.In addition,the compliance mismatch caused different radial displacements first,which in turn affected the hemodynamics.Inspired by this,a novel medium convex artificial blood vessel was proposed,and the simulation results theoretically validated its desired effect on reducing the compliance mismatch.An increase of 0.22 mm in the diameter of the artificial blood vessel corresponded to a decrease of 0.88%in compliance mismatch degree.The feasibility of preparing real medium convex artificial blood vessel was also investigated.The PLCL medium convex artificial blood vessel with good mechanical properties was prepared by dip-coating and electrospinning composite method.These findings are valuable for the design and preparation of novel artificial blood vessel which can make up for the mismatch of compliance.
基金financially supported by the Program for New Century of Excellent Talents in University(NCET-07-0596)Ministry of Education of China,by the International Cooperation from the Ministry of Science and Technology of China(MOST No.2008DFA51170)+2 种基金by the Science and Technology Project of Tianjin Municipal Science and Technology Commission(No.08ZCKFSF03300)The project is funded by the Tianjin University-Helmholtz-Zentrum Geesthacht Joint Laboratory for BiomaterialsRegenerative Medicine,which is financed by MOST and the German Federal Ministry of Education and Research(BMBF).
文摘In this paper,a scaffold,which mimics the morphology and mechanical properties of a native blood vessel is reported.The scaffold was prepared by sequential bi-layer electrospinning on a rotating mandrel-type collector.The tubular scaffolds(inner diameter 4 mm,length 3 cm)are composed of a polyurethane(PU)fibrous outer-layer and a gelatin-heparin fibrous inner-layer.They were fabricated by electrospinning technology,which enables control of the composition,structure,and mechanical properties of the scaffolds.The microstructure,fiber morphology and mechanical properties of the scaffolds were examined by means of scanning electron microscopy(SEM)and tensile tests.The PU/gelatinheparin tubular scaffolds have a porous structure.The scaffolds achieved a breaking strength(3.7±0.13 MPa)and an elongation at break(110±8%)that are appropriate for artificial blood vessels.When the scaffolds were immersed in water for 1 h,the breaking strength decreased slightly to 2.2±0.3 MPa,but the elongation at break increased to 14521%.In platelet adhesion tests the gelatin-heparin fibrous scaffolds showed a significant suppression of platelet adhesion.Heparin was released from the scaffolds at a fairly uniform rate during the period of 2nd day to 9th day.The scaffolds are expected to mimic the complex matrix structure of native arteries,and to have good biocompatibility as an artificial blood vessel owing to the heparin release.
基金This work was supported by the National Natural Science Foundation of China(No.81873529)the Natural Science Foundation of Hubei Province(No.2020CFA022).
文摘Cardiovascular disease serves as the leading cause of death worldwide,with stenosis,occlusion,or severe dysfunction of blood vessels being its pathophysiological mechanism.Vascular replacement is the preferred surgical option for treating obstructed vascular structures.Due to the limited availability of healthy autologous vessels as well as the incidence of postoperative complications,there is an increasing demand for artificial blood vessels.From synthetic to natural,or a mixture of these components,numerous materials have been used to prepare artificial vascular grafts.Although synthetic grafts are more appropriate for use in medium to large-diameter vessels,they fail when replacing small-diameter vessels.Tissue-engineered vascular grafts are very likely to be an ideal alternative to autologous grafts in small-diameter vessels and are worthy of further investigation.However,a multitude of problems remain that must be resolved before they can be used in biomedical applications.Accordingly,this review attempts to describe these problems and provide a discussion of the generation of artificial blood vessels.In addition,we deliberate on current state-of-the-art technologies for creating artificial blood vessels,including advances in materials,fabrication techniques,various methods of surface modification,as well as preclinical and clinical applications.Furthermore,the evaluation of grafts both in vivo and in vitro,mechanical properties,challenges,and directions for further research are also discussed.