There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote...There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote successful fabrication of small-diameter artificial blood vessels.From a physical perspective,the internal oriented structures of natural blood vessels plays an important role in guiding the directional growth of cells,improving the blood flow environment,and promoting the regeneration of vascular tissue.In this review,the effects of the oriented structures on cells,including endothelial cells(ECs),smooth muscle cells(SMCs)and stem cells,as well as the effect of the oriented structures on hemodynamics and vascular tissue remodeling and regeneration are introduced.Various forms of oriented structures(fibers,grooves,channels,etc.)and their construction methods are also reviewed.Conclusions and future perspectives are given.It is expected to give some references to relevant researches.展开更多
There has been an increasing demand for bioengineered blood vessels for utilization in both regenerative medicine and drug screening.However,the availability of a true bioengineered vascular graft remains limited.Thre...There has been an increasing demand for bioengineered blood vessels for utilization in both regenerative medicine and drug screening.However,the availability of a true bioengineered vascular graft remains limited.Three-dimensional(3D)bioprinting presents a potential approach for fabricating blood vessels or vascularized tissue constructs of various architectures and sizes for transplantation and regeneration.In this review,we summarize the basic biology of different blood vessels,as well as 3D bioprinting approaches and bioink designs that have been applied to fabricate vascular and vascularized tissue constructs,with a focus on small-diameter blood vessels.展开更多
Following a normal low temperature drying schedule, the small-diameter Birch lumbers ( 1 000mm× 45mm ×30mm) were dried with consecution-heats or intermittent-heating, visual drying defects (bow, crook, tw...Following a normal low temperature drying schedule, the small-diameter Birch lumbers ( 1 000mm× 45mm ×30mm) were dried with consecution-heats or intermittent-heating, visual drying defects (bow, crook, twist, check along grain and end check) were measured, and then statistical analyses were performed. It was found that the drying quality of small-diameter Birch lumbers could be improved with intermittent-heating, but the intermittent time should be prolonged. Prolonging intermittent time helped to weaken or even avoid wood distortion and drying checks. It wash' t helpful in avoiding crook. The drying quality of small-diameter Birch lumbers with all kinds of drying methods reached the second class of the Chinese National Standard. The drying quality reached the first class of the Chinese National Standard with the intermittent-heating in the area of visual wood defects.展开更多
Korean pine population strueture in natural Korean pine forest was studied through massive field investigation and indoor analvsis. Small-diameter Korean pines origination, growth charaeter and their roles in stand we...Korean pine population strueture in natural Korean pine forest was studied through massive field investigation and indoor analvsis. Small-diameter Korean pines origination, growth charaeter and their roles in stand were discussed from the view of population origination and tree growth. The results show that small-diameter Korean pines origination and growth havc close relations to the overstory canopy structure dynamics and play an important role in the maintenance and development of Korean pine forest. The process from small-diameter trees to dominant canopy is a selfmaintenance phase, with diffieulty, in Korean pine population. To complete this phase, it not only demands some morphological characters and physiological conditions, but severe forest strueture conditions as well. The time for complating this phase needs separation from overstory Korean pines and converge with overstory broad-leaf trees. In vertical space, it needs to fell overstory canopy or reduce the layers of overstory canopy, and in horizontal space it should be separated from Korean pines but accompanied by broad-leaf trees.展开更多
Mobile sensor nodes such as hopping sensors are of critical importance in data collection.However,the occurrence of sensing holes is unavoidable due to the energy limitation of the nodes.Thus,it is evident that the re...Mobile sensor nodes such as hopping sensors are of critical importance in data collection.However,the occurrence of sensing holes is unavoidable due to the energy limitation of the nodes.Thus,it is evident that the relocation of mobile sensors is the most desirable method to recover the sensing holes.The previous research conducted by the authors so far demonstrated the most realistic hopping sensor relocation scheme,which is suitable for the distributed environment.In previous studies,the cluster header plays an essential role in detecting the sensing hole and requesting the neighboring cluster to recover the sensing hole that occurred in the sensor node.However,the limitations of the cluster header in the previously proposed relocation protocol are not fully considered.Because the cluster header jumps more frequently than non-header nodes,its energy con-sumption is relatively high compared to other nodes.Therefore,it is most likely to lead to header node failure and can lead to data loss on the network.In this paper,the jumping ability and energy consumption of the cluster header are seriously considered.Additional ability to replace cluster headers in case of failure is also implemented.Simulation results show that the data collection time can be further increased,which demonstrates the validity of the proposed algorithms.展开更多
One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious...One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious files.In this study,an exclusive set of 29 features was collected from trusted implementations,this set was used as a baseline to analyze the presented work in this research.A Decision Tree(DT)and Neural Network Multi-Layer Perceptron(NN-MLPC)algorithms were utilized during this work.Both algorithms were chosen after testing a few diverse procedures.This work implements a method of subgrouping features to answer questions such as,which feature has a positive impact on accuracy when added?Is it possible to determine a reliable feature set to distinguish a malicious PE file from a benign one?when combining features,would it have any effect on malware detection accuracy in a PE file?Results obtained using the proposed method were improved and carried few observations.Generally,the obtained results had practical and numerical parts,for the practical part,the number of features and which features included are the main factors impacting the calculated accuracy,also,the combination of features is as crucial in these calculations.Numerical results included,finding accuracies with enhanced values,for example,NN_MLPC attained 0.979 and 0.98;for DT an accuracy of 0.9825 and 0.986 was attained.展开更多
This paper investigates whether security headers are enforced to mitigate cyber-attacks in web-based systems in cyberspace. The security headers examined include X-Content-Type-Options, X-Frame-Options, Strict-Transpo...This paper investigates whether security headers are enforced to mitigate cyber-attacks in web-based systems in cyberspace. The security headers examined include X-Content-Type-Options, X-Frame-Options, Strict-Transport-Security, Referrer-Policy, Content-Security-Policy, and Permissions-Policy. The study employed a controlled experiment using a security header analysis tool. The web-based applications (websites) were analyzed to determine whether security headers have been correctly implemented. The experiment was iterated for 100 universities in Africa which are ranked high. The purposive sampling technique was employed to understand the status quo of the security headers implementations. The results revealed that 70% of the web-based applications in Africa have not enforced security headers in web-based applications. The study proposes a secure system architecture design for addressing web-based applications’ misconfiguration and insecure design. It presents security techniques for securing web-based applications through hardening security headers using automated threat modelling techniques. Furthermore, it recommends adopting the security headers in web-based applications using the proposed secure system architecture design.展开更多
Synthetic vascular grafts suitable for small-diameter arteries(<6 mm) are in great need.However,there are still no commercially available small-diameter vascular grafts(SDVGs) in clinical practice due to thrombosis...Synthetic vascular grafts suitable for small-diameter arteries(<6 mm) are in great need.However,there are still no commercially available small-diameter vascular grafts(SDVGs) in clinical practice due to thrombosis and stenosis after in vivo implantation.When designing SDVGs,many studies emphasized reendothelization but ignored the importance of reconstruction of the smooth muscle layer(SML).To facilitate rapid SML regeneration,a high-resolution 3D printing method was used to create a novel bilayer SDVG with structures and mechanical properties mimicking natural arteries.Bioinspired by the collagen alignment of SML,the inner layer of the grafts had larger pore sizes and high porosity to accelerate the infiltration of cells and their circumferential alignment,which could facilitate SML reconstruction for compliance restoration and spontaneous endothelialization.The outer layer was designed to induce fibroblast recruitment by low porosity and minor pore size and provide SDVG with sufficient mechanical strength.One month after implantation,the arteries regenerated by 3D-printed grafts exhibited better pulsatility than electrospun grafts,with a compliance(8.9%) approaching that of natural arteries(11.36%) and significantly higher than that of electrospun ones(1.9%).The 3D-printed vascular demonstrated a three-layer structure more closely resembling natural arteries while electrospun grafts showed incomplete endothelium and immature SML.Our study shows the importance of SML reconstruction during vascular graft regeneration and provides an effective strategy to reconstruct blood vessels through 3D-printed structures rapidly.展开更多
文摘There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote successful fabrication of small-diameter artificial blood vessels.From a physical perspective,the internal oriented structures of natural blood vessels plays an important role in guiding the directional growth of cells,improving the blood flow environment,and promoting the regeneration of vascular tissue.In this review,the effects of the oriented structures on cells,including endothelial cells(ECs),smooth muscle cells(SMCs)and stem cells,as well as the effect of the oriented structures on hemodynamics and vascular tissue remodeling and regeneration are introduced.Various forms of oriented structures(fibers,grooves,channels,etc.)and their construction methods are also reviewed.Conclusions and future perspectives are given.It is expected to give some references to relevant researches.
基金funding from the US National Institutes of Health(R00CA201603,R21EB025270,R21EB026175,R01EB028143)and the Brigham Research Institute.
文摘There has been an increasing demand for bioengineered blood vessels for utilization in both regenerative medicine and drug screening.However,the availability of a true bioengineered vascular graft remains limited.Three-dimensional(3D)bioprinting presents a potential approach for fabricating blood vessels or vascularized tissue constructs of various architectures and sizes for transplantation and regeneration.In this review,we summarize the basic biology of different blood vessels,as well as 3D bioprinting approaches and bioink designs that have been applied to fabricate vascular and vascularized tissue constructs,with a focus on small-diameter blood vessels.
基金Sponsored by Huo Yingdong Funds (Grant No.81022)Program of Heilongjiang Province (Grant No.GB02B603).
文摘Following a normal low temperature drying schedule, the small-diameter Birch lumbers ( 1 000mm× 45mm ×30mm) were dried with consecution-heats or intermittent-heating, visual drying defects (bow, crook, twist, check along grain and end check) were measured, and then statistical analyses were performed. It was found that the drying quality of small-diameter Birch lumbers could be improved with intermittent-heating, but the intermittent time should be prolonged. Prolonging intermittent time helped to weaken or even avoid wood distortion and drying checks. It wash' t helpful in avoiding crook. The drying quality of small-diameter Birch lumbers with all kinds of drying methods reached the second class of the Chinese National Standard. The drying quality reached the first class of the Chinese National Standard with the intermittent-heating in the area of visual wood defects.
文摘Korean pine population strueture in natural Korean pine forest was studied through massive field investigation and indoor analvsis. Small-diameter Korean pines origination, growth charaeter and their roles in stand were discussed from the view of population origination and tree growth. The results show that small-diameter Korean pines origination and growth havc close relations to the overstory canopy structure dynamics and play an important role in the maintenance and development of Korean pine forest. The process from small-diameter trees to dominant canopy is a selfmaintenance phase, with diffieulty, in Korean pine population. To complete this phase, it not only demands some morphological characters and physiological conditions, but severe forest strueture conditions as well. The time for complating this phase needs separation from overstory Korean pines and converge with overstory broad-leaf trees. In vertical space, it needs to fell overstory canopy or reduce the layers of overstory canopy, and in horizontal space it should be separated from Korean pines but accompanied by broad-leaf trees.
基金supported by Incheon National University Research Grant in 2020(2020–0437)。
文摘Mobile sensor nodes such as hopping sensors are of critical importance in data collection.However,the occurrence of sensing holes is unavoidable due to the energy limitation of the nodes.Thus,it is evident that the relocation of mobile sensors is the most desirable method to recover the sensing holes.The previous research conducted by the authors so far demonstrated the most realistic hopping sensor relocation scheme,which is suitable for the distributed environment.In previous studies,the cluster header plays an essential role in detecting the sensing hole and requesting the neighboring cluster to recover the sensing hole that occurred in the sensor node.However,the limitations of the cluster header in the previously proposed relocation protocol are not fully considered.Because the cluster header jumps more frequently than non-header nodes,its energy con-sumption is relatively high compared to other nodes.Therefore,it is most likely to lead to header node failure and can lead to data loss on the network.In this paper,the jumping ability and energy consumption of the cluster header are seriously considered.Additional ability to replace cluster headers in case of failure is also implemented.Simulation results show that the data collection time can be further increased,which demonstrates the validity of the proposed algorithms.
文摘One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious files.In this study,an exclusive set of 29 features was collected from trusted implementations,this set was used as a baseline to analyze the presented work in this research.A Decision Tree(DT)and Neural Network Multi-Layer Perceptron(NN-MLPC)algorithms were utilized during this work.Both algorithms were chosen after testing a few diverse procedures.This work implements a method of subgrouping features to answer questions such as,which feature has a positive impact on accuracy when added?Is it possible to determine a reliable feature set to distinguish a malicious PE file from a benign one?when combining features,would it have any effect on malware detection accuracy in a PE file?Results obtained using the proposed method were improved and carried few observations.Generally,the obtained results had practical and numerical parts,for the practical part,the number of features and which features included are the main factors impacting the calculated accuracy,also,the combination of features is as crucial in these calculations.Numerical results included,finding accuracies with enhanced values,for example,NN_MLPC attained 0.979 and 0.98;for DT an accuracy of 0.9825 and 0.986 was attained.
文摘This paper investigates whether security headers are enforced to mitigate cyber-attacks in web-based systems in cyberspace. The security headers examined include X-Content-Type-Options, X-Frame-Options, Strict-Transport-Security, Referrer-Policy, Content-Security-Policy, and Permissions-Policy. The study employed a controlled experiment using a security header analysis tool. The web-based applications (websites) were analyzed to determine whether security headers have been correctly implemented. The experiment was iterated for 100 universities in Africa which are ranked high. The purposive sampling technique was employed to understand the status quo of the security headers implementations. The results revealed that 70% of the web-based applications in Africa have not enforced security headers in web-based applications. The study proposes a secure system architecture design for addressing web-based applications’ misconfiguration and insecure design. It presents security techniques for securing web-based applications through hardening security headers using automated threat modelling techniques. Furthermore, it recommends adopting the security headers in web-based applications using the proposed secure system architecture design.
基金sponsored by the National Natural Science Foundation of China (Nos.52235007, 52325504, T2121004)Zhejiang Province Natural Science Foundation of China under Grant No.LQ23H090012, LQ22H180001the Science and Technology of Medicine and Health program of Zhejiang Province (No.2023RC028)。
文摘Synthetic vascular grafts suitable for small-diameter arteries(<6 mm) are in great need.However,there are still no commercially available small-diameter vascular grafts(SDVGs) in clinical practice due to thrombosis and stenosis after in vivo implantation.When designing SDVGs,many studies emphasized reendothelization but ignored the importance of reconstruction of the smooth muscle layer(SML).To facilitate rapid SML regeneration,a high-resolution 3D printing method was used to create a novel bilayer SDVG with structures and mechanical properties mimicking natural arteries.Bioinspired by the collagen alignment of SML,the inner layer of the grafts had larger pore sizes and high porosity to accelerate the infiltration of cells and their circumferential alignment,which could facilitate SML reconstruction for compliance restoration and spontaneous endothelialization.The outer layer was designed to induce fibroblast recruitment by low porosity and minor pore size and provide SDVG with sufficient mechanical strength.One month after implantation,the arteries regenerated by 3D-printed grafts exhibited better pulsatility than electrospun grafts,with a compliance(8.9%) approaching that of natural arteries(11.36%) and significantly higher than that of electrospun ones(1.9%).The 3D-printed vascular demonstrated a three-layer structure more closely resembling natural arteries while electrospun grafts showed incomplete endothelium and immature SML.Our study shows the importance of SML reconstruction during vascular graft regeneration and provides an effective strategy to reconstruct blood vessels through 3D-printed structures rapidly.