There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote...There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote successful fabrication of small-diameter artificial blood vessels.From a physical perspective,the internal oriented structures of natural blood vessels plays an important role in guiding the directional growth of cells,improving the blood flow environment,and promoting the regeneration of vascular tissue.In this review,the effects of the oriented structures on cells,including endothelial cells(ECs),smooth muscle cells(SMCs)and stem cells,as well as the effect of the oriented structures on hemodynamics and vascular tissue remodeling and regeneration are introduced.Various forms of oriented structures(fibers,grooves,channels,etc.)and their construction methods are also reviewed.Conclusions and future perspectives are given.It is expected to give some references to relevant researches.展开更多
This paper reports the evolution of textile structure and mechanical properties of vascular prosthesis in the level of the whole prosthesis and the constituent filaments with respect to the manufacturing process. The ...This paper reports the evolution of textile structure and mechanical properties of vascular prosthesis in the level of the whole prosthesis and the constituent filaments with respect to the manufacturing process. The tubular wall of the prosthesis is divided circumferentially into three zones; basic line (BL), remeshing line ( RL) and guide line ( GL). Some heterogeneity has been observed on the tubular wall in terms of stitch structure of the prosthesis and linear density of the constituent filaments. The breaking position of the prosthesis under circumferential tensile localizes preferentially in remeshing line that is the weakest zone by warp knitting with double needle bed. Furthermore, the statistical differences of the mechanical properties of the filaments of zone RL, GL and BL have been confirmed too. It is predictable that the deterioration of prosthesis, under physiological loads (periodical pulse blood pressure etc.), could happen firstly in the weaker zone in vivo.展开更多
Synthetic vascular grafts suitable for small-diameter arteries(<6 mm) are in great need.However,there are still no commercially available small-diameter vascular grafts(SDVGs) in clinical practice due to thrombosis...Synthetic vascular grafts suitable for small-diameter arteries(<6 mm) are in great need.However,there are still no commercially available small-diameter vascular grafts(SDVGs) in clinical practice due to thrombosis and stenosis after in vivo implantation.When designing SDVGs,many studies emphasized reendothelization but ignored the importance of reconstruction of the smooth muscle layer(SML).To facilitate rapid SML regeneration,a high-resolution 3D printing method was used to create a novel bilayer SDVG with structures and mechanical properties mimicking natural arteries.Bioinspired by the collagen alignment of SML,the inner layer of the grafts had larger pore sizes and high porosity to accelerate the infiltration of cells and their circumferential alignment,which could facilitate SML reconstruction for compliance restoration and spontaneous endothelialization.The outer layer was designed to induce fibroblast recruitment by low porosity and minor pore size and provide SDVG with sufficient mechanical strength.One month after implantation,the arteries regenerated by 3D-printed grafts exhibited better pulsatility than electrospun grafts,with a compliance(8.9%) approaching that of natural arteries(11.36%) and significantly higher than that of electrospun ones(1.9%).The 3D-printed vascular demonstrated a three-layer structure more closely resembling natural arteries while electrospun grafts showed incomplete endothelium and immature SML.Our study shows the importance of SML reconstruction during vascular graft regeneration and provides an effective strategy to reconstruct blood vessels through 3D-printed structures rapidly.展开更多
Current gold standard for the replacement of small-diameter blood vessel(ID<4 mm)is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts(SDVG)on weak endothel...Current gold standard for the replacement of small-diameter blood vessel(ID<4 mm)is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts(SDVG)on weak endothelialization,intimal hyperplasia and low patency.Herein,we create the SDVG with the tailored endothelialization by applying the engineered endothelial cell vesicles to camouflaging vascular grafts for the enhancement of vascular remodeling.The engineered endothelial cell vesicles were modified with azide groups(ECVs-N3)through metabolic glycoengineering to precisely link the vascular graft made of PCL-DBCO via click chemistry,and thus fabricating ECVG(ECVs-N3 modified SDVG),which assists inhibition of platelet adhesion and activation,promotion of ECs adhesion and enhancement of anti-inflammation.Furthermore,In vivo single-cell transcriptome analysis revealed that the proportion of ECs in the cell composition of ECVG surpassed that of PCL,and the tailored endothelialization enabled to convert endothelial cells(ECs)into some specific ECs clusters.One of the specific cluster,Endo_C5 cluster,was only detected in ECVG.Consequently,our study integrates the engineered membrane vesicles of ECVs-N3 from native ECs for tailored endothelialization on SDVG by circumventing the limitations of living cells,and paves a new way to construct the alternative endothelialization in vessel remodeling following injury.展开更多
There has been an increasing demand for bioengineered blood vessels for utilization in both regenerative medicine and drug screening.However,the availability of a true bioengineered vascular graft remains limited.Thre...There has been an increasing demand for bioengineered blood vessels for utilization in both regenerative medicine and drug screening.However,the availability of a true bioengineered vascular graft remains limited.Three-dimensional(3D)bioprinting presents a potential approach for fabricating blood vessels or vascularized tissue constructs of various architectures and sizes for transplantation and regeneration.In this review,we summarize the basic biology of different blood vessels,as well as 3D bioprinting approaches and bioink designs that have been applied to fabricate vascular and vascularized tissue constructs,with a focus on small-diameter blood vessels.展开更多
Background People recently realized that it is important for artificial vascular biodegradable graft to bionically mimic the functions of the native vessel. In order to overcome the high risk of thrombosis and keep th...Background People recently realized that it is important for artificial vascular biodegradable graft to bionically mimic the functions of the native vessel. In order to overcome the high risk of thrombosis and keep the patency in the clinical small-diameter vascular graft (SDVG) transplantation, a double-layer bionic scaffold, which can offer anticoagulation and mechanical strength simultaneously, was designed and fabricated via electrospinning technique. Methods Heparin-conjugated polycaprolactone (hPCL) and polyurethane (PU)-collagen type I composite was used as the inner and outer layers, respectively. The porosity and the burst pressure of SDVG were evaluated. Its biocompatibility was demonstrated by the 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H tetrazolium bromide (MTT) test in vitro and subcutaneous implants in vivo respectively. The grafts of diameter 2.5 mm and length 4.0 cm were implanted to replace the femoral artery in Beagle dog model. Then, angiography was performed in the Beagle dogs to investigate the patency and aneurysm of grafts at 2, 4, and 8 weeks post-transplantation. After angiography, the patent grafts were explanted for histological analysis. Results The double-layer bionic SDVG meet the clinical mechanical demand. Its good biocompatibility was proven by cytotoxicity experiment (the cell's relative growth rates (RGR) of PU-collagen outer layer were 102.8%, 109.2% and 103.5%, while the RGR of hPCL inner layer were 99.0%, 100.0% and 98.0%, on days 1, 3, and 5, respectively) and the subdermal implants experiment in the Beagle dog. Arteriography showed that all the implanted SDVGs were patent without any aneurismal dilatation or obvious anastomotic stenosis at the 2nd, 4th, and 8th week after the operation, except one SDVG that failed at the 2nd week. Histological analysis and SEM showed that the inner layer was covered by new endothelial-like cells. Conclusion The double-layer bionic SDVG is a promising candidate as a replacement of native small-diameter vascular graft.展开更多
Nitric oxide(NO)and hydrogen sulfide(H_(2)S)gasotransmitters exhibit potential therapeutic effects in the car-diovascular system.Herein,biomimicking multilayer structures of biological blood vessels,bilayer smalldiame...Nitric oxide(NO)and hydrogen sulfide(H_(2)S)gasotransmitters exhibit potential therapeutic effects in the car-diovascular system.Herein,biomimicking multilayer structures of biological blood vessels,bilayer smalldiameter vascular grafts(SDVGs)with on-demand NO and H_(2)S release capabilities,were designed and fabri-cated.The keratin-based H_(2)S donor(KTC)with good biocompatibility and high stability was first synthesized and then electrospun with poly(L-lactide-co-caprolactone)(PLCL)to be used as the outer layer of grafts.The elec-trospun poly(ε-caprolactone)(PCL)mats were aminolyzed and further chelated with copper(II)ions to construct glutathione peroxidase(GPx)-like structural surfaces for the catalytic generation of NO,which acted as the inner layer of grafts.The on-demand release of NO and H_(2)S selectively and synergistically promoted the proliferation and migration of human umbilical vein endothelial cells(HUVECs)while inhibiting the proliferation and migration of human umbilical artery smooth muscle cells(HUASMCs).Dual releases of NO and H_(2)S gaso-transmitters could enhance their respective production,resulting in enhanced promotion of HUVECs and inhi-bition of HUASMCs owing to their combined actions.In addition,the bilayer grafts were conducive to forming endothelial cell layers under flow shear stress.In rat abdominal aorta replacement models,the grafts remained patency for 6 months.These grafts were capable of facilitating rapid endothelialization and alleviating neo-intimal hyperplasia without obvious injury,inflammation,or thrombosis.More importantly,the grafts were expected to avoid calcification with the degradation of the grafts.Taken together,these bilayer grafts will be greatly promising candidates for SDVGs with rapid endothelialization and anti-calcification properties.展开更多
文摘There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote successful fabrication of small-diameter artificial blood vessels.From a physical perspective,the internal oriented structures of natural blood vessels plays an important role in guiding the directional growth of cells,improving the blood flow environment,and promoting the regeneration of vascular tissue.In this review,the effects of the oriented structures on cells,including endothelial cells(ECs),smooth muscle cells(SMCs)and stem cells,as well as the effect of the oriented structures on hemodynamics and vascular tissue remodeling and regeneration are introduced.Various forms of oriented structures(fibers,grooves,channels,etc.)and their construction methods are also reviewed.Conclusions and future perspectives are given.It is expected to give some references to relevant researches.
基金Funded by the Shanghai Post Doctoral Foundation Overseas Returned Scholars' Foundation of Education Ministry the Shanghai Key Discipline Project
文摘This paper reports the evolution of textile structure and mechanical properties of vascular prosthesis in the level of the whole prosthesis and the constituent filaments with respect to the manufacturing process. The tubular wall of the prosthesis is divided circumferentially into three zones; basic line (BL), remeshing line ( RL) and guide line ( GL). Some heterogeneity has been observed on the tubular wall in terms of stitch structure of the prosthesis and linear density of the constituent filaments. The breaking position of the prosthesis under circumferential tensile localizes preferentially in remeshing line that is the weakest zone by warp knitting with double needle bed. Furthermore, the statistical differences of the mechanical properties of the filaments of zone RL, GL and BL have been confirmed too. It is predictable that the deterioration of prosthesis, under physiological loads (periodical pulse blood pressure etc.), could happen firstly in the weaker zone in vivo.
基金sponsored by the National Natural Science Foundation of China (Nos.52235007, 52325504, T2121004)Zhejiang Province Natural Science Foundation of China under Grant No.LQ23H090012, LQ22H180001the Science and Technology of Medicine and Health program of Zhejiang Province (No.2023RC028)。
文摘Synthetic vascular grafts suitable for small-diameter arteries(<6 mm) are in great need.However,there are still no commercially available small-diameter vascular grafts(SDVGs) in clinical practice due to thrombosis and stenosis after in vivo implantation.When designing SDVGs,many studies emphasized reendothelization but ignored the importance of reconstruction of the smooth muscle layer(SML).To facilitate rapid SML regeneration,a high-resolution 3D printing method was used to create a novel bilayer SDVG with structures and mechanical properties mimicking natural arteries.Bioinspired by the collagen alignment of SML,the inner layer of the grafts had larger pore sizes and high porosity to accelerate the infiltration of cells and their circumferential alignment,which could facilitate SML reconstruction for compliance restoration and spontaneous endothelialization.The outer layer was designed to induce fibroblast recruitment by low porosity and minor pore size and provide SDVG with sufficient mechanical strength.One month after implantation,the arteries regenerated by 3D-printed grafts exhibited better pulsatility than electrospun grafts,with a compliance(8.9%) approaching that of natural arteries(11.36%) and significantly higher than that of electrospun ones(1.9%).The 3D-printed vascular demonstrated a three-layer structure more closely resembling natural arteries while electrospun grafts showed incomplete endothelium and immature SML.Our study shows the importance of SML reconstruction during vascular graft regeneration and provides an effective strategy to reconstruct blood vessels through 3D-printed structures rapidly.
基金National Key Research and Development Program of China(2022YFA1105100)National Natural Science Foundation of China(32301102+3 种基金32171323)Fundamental Research Funds for the Central Universities(YCJJ20230215)Science,Technology and Innovation Commission of Shenzhen Municipality(KCXFZ20211020164544008)Sanming Project of Medicine in Shenzhen(SZSM201812055).
文摘Current gold standard for the replacement of small-diameter blood vessel(ID<4 mm)is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts(SDVG)on weak endothelialization,intimal hyperplasia and low patency.Herein,we create the SDVG with the tailored endothelialization by applying the engineered endothelial cell vesicles to camouflaging vascular grafts for the enhancement of vascular remodeling.The engineered endothelial cell vesicles were modified with azide groups(ECVs-N3)through metabolic glycoengineering to precisely link the vascular graft made of PCL-DBCO via click chemistry,and thus fabricating ECVG(ECVs-N3 modified SDVG),which assists inhibition of platelet adhesion and activation,promotion of ECs adhesion and enhancement of anti-inflammation.Furthermore,In vivo single-cell transcriptome analysis revealed that the proportion of ECs in the cell composition of ECVG surpassed that of PCL,and the tailored endothelialization enabled to convert endothelial cells(ECs)into some specific ECs clusters.One of the specific cluster,Endo_C5 cluster,was only detected in ECVG.Consequently,our study integrates the engineered membrane vesicles of ECVs-N3 from native ECs for tailored endothelialization on SDVG by circumventing the limitations of living cells,and paves a new way to construct the alternative endothelialization in vessel remodeling following injury.
基金funding from the US National Institutes of Health(R00CA201603,R21EB025270,R21EB026175,R01EB028143)and the Brigham Research Institute.
文摘There has been an increasing demand for bioengineered blood vessels for utilization in both regenerative medicine and drug screening.However,the availability of a true bioengineered vascular graft remains limited.Three-dimensional(3D)bioprinting presents a potential approach for fabricating blood vessels or vascularized tissue constructs of various architectures and sizes for transplantation and regeneration.In this review,we summarize the basic biology of different blood vessels,as well as 3D bioprinting approaches and bioink designs that have been applied to fabricate vascular and vascularized tissue constructs,with a focus on small-diameter blood vessels.
文摘Background People recently realized that it is important for artificial vascular biodegradable graft to bionically mimic the functions of the native vessel. In order to overcome the high risk of thrombosis and keep the patency in the clinical small-diameter vascular graft (SDVG) transplantation, a double-layer bionic scaffold, which can offer anticoagulation and mechanical strength simultaneously, was designed and fabricated via electrospinning technique. Methods Heparin-conjugated polycaprolactone (hPCL) and polyurethane (PU)-collagen type I composite was used as the inner and outer layers, respectively. The porosity and the burst pressure of SDVG were evaluated. Its biocompatibility was demonstrated by the 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H tetrazolium bromide (MTT) test in vitro and subcutaneous implants in vivo respectively. The grafts of diameter 2.5 mm and length 4.0 cm were implanted to replace the femoral artery in Beagle dog model. Then, angiography was performed in the Beagle dogs to investigate the patency and aneurysm of grafts at 2, 4, and 8 weeks post-transplantation. After angiography, the patent grafts were explanted for histological analysis. Results The double-layer bionic SDVG meet the clinical mechanical demand. Its good biocompatibility was proven by cytotoxicity experiment (the cell's relative growth rates (RGR) of PU-collagen outer layer were 102.8%, 109.2% and 103.5%, while the RGR of hPCL inner layer were 99.0%, 100.0% and 98.0%, on days 1, 3, and 5, respectively) and the subdermal implants experiment in the Beagle dog. Arteriography showed that all the implanted SDVGs were patent without any aneurismal dilatation or obvious anastomotic stenosis at the 2nd, 4th, and 8th week after the operation, except one SDVG that failed at the 2nd week. Histological analysis and SEM showed that the inner layer was covered by new endothelial-like cells. Conclusion The double-layer bionic SDVG is a promising candidate as a replacement of native small-diameter vascular graft.
基金supported by the National Natural Science Fund of China(81873923)Jiangsu Higher Education Institutions(19KJA310001 and PAPD)Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.
文摘Nitric oxide(NO)and hydrogen sulfide(H_(2)S)gasotransmitters exhibit potential therapeutic effects in the car-diovascular system.Herein,biomimicking multilayer structures of biological blood vessels,bilayer smalldiameter vascular grafts(SDVGs)with on-demand NO and H_(2)S release capabilities,were designed and fabri-cated.The keratin-based H_(2)S donor(KTC)with good biocompatibility and high stability was first synthesized and then electrospun with poly(L-lactide-co-caprolactone)(PLCL)to be used as the outer layer of grafts.The elec-trospun poly(ε-caprolactone)(PCL)mats were aminolyzed and further chelated with copper(II)ions to construct glutathione peroxidase(GPx)-like structural surfaces for the catalytic generation of NO,which acted as the inner layer of grafts.The on-demand release of NO and H_(2)S selectively and synergistically promoted the proliferation and migration of human umbilical vein endothelial cells(HUVECs)while inhibiting the proliferation and migration of human umbilical artery smooth muscle cells(HUASMCs).Dual releases of NO and H_(2)S gaso-transmitters could enhance their respective production,resulting in enhanced promotion of HUVECs and inhi-bition of HUASMCs owing to their combined actions.In addition,the bilayer grafts were conducive to forming endothelial cell layers under flow shear stress.In rat abdominal aorta replacement models,the grafts remained patency for 6 months.These grafts were capable of facilitating rapid endothelialization and alleviating neo-intimal hyperplasia without obvious injury,inflammation,or thrombosis.More importantly,the grafts were expected to avoid calcification with the degradation of the grafts.Taken together,these bilayer grafts will be greatly promising candidates for SDVGs with rapid endothelialization and anti-calcification properties.