Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflecti...Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events(and their proportions) were cluster cells(35.4%), squall lines(18.4%), nonlinear-shaped systems(17.8%), broken lines(11.6%), individual cells(1.2%), and bow echoes(0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.展开更多
Based on the previous statistical analysis of mesoscale convective systems(MCSs)over the second-step terrain along Yangtze-Huaihe River Valley,eight representative long-lived eastward-propagating MCSs are selected for...Based on the previous statistical analysis of mesoscale convective systems(MCSs)over the second-step terrain along Yangtze-Huaihe River Valley,eight representative long-lived eastward-propagating MCSs are selected for model-based sensitivity testing to investigate the initiation and evolution of these types of MCSs as well as their impact on downstream areas.We subject each MCS to a semi-idealized(CNTL)simulation and a sensitivity(NOLH)simulation that neglects condensational heating in the formation region.The CNTL experiment reveals convection forms in the region downstream of a shortwave trough typified by persistent southwesterly winds in the low-to midtroposphere.Upon merging with other convective systems,moist convection develops into an MCS,which propagates eastward under the influence of mid-tropospheric westerlies,and moves out of the second-step terrain.The MCS then merges with pre-existing local convection over the plains;the merged convection reinforces the cyclonic wind perturbation into a mesoscale vortex at 850 hPa.While this vortex moves eastward to regions with local vortex at 850 hPa,another vortex at 925 hPa is also intensified.Finally,the vortices at 850 and 925 hPa merge together and develop into a mesoscale convective vortex(MCV).In contrast,MCSs fail to form and move eastward in the NOLH experiment.In the absence of eastward-propagating MCSs,moist convection and mesoscale vortices still appear in the plains,but the vortex strength and precipitation intensity are significantly weakened.It is suggested the eastward-propagating MCSs over the second-step terrain significantly impact the development and enhancement of moist convection and vortices in the downstream areas.展开更多
In this paper, Geostationary Meteorological Satellite (GMS) infrared black-body temperature (Tbb) data from June to August 1998 are used to automatically track the activity of Mesoscale Convective System (MCS) over th...In this paper, Geostationary Meteorological Satellite (GMS) infrared black-body temperature (Tbb) data from June to August 1998 are used to automatically track the activity of Mesoscale Convective System (MCS) over the Tibetan Plateau in China. Consequently, the features of MCS, such as area, intensity, life cycle, activity region and shape, are obtained. High Resolution Limited Area Analysis and Forecasting System (HLAFS) values provided by China National Meteorological Center are used to study the relationships between the MCS trajectories and their environmental physical field values, based on the distribution and trajectories of MCSs over the Tibetan Plateau. Favorable environmental physical field charts of influencing MCS movement out of the Tibetan Plateau in different UTC (Universal Time Coordinate) are developed by using spatial data mining techniques at levels of 400hPa and 500hPa, respectively.展开更多
Disaster weather forecasting is becoming increasingly important. In this paper, the trajectories of Mesoscale Convective Systems (MCSs) were automatically tracked over the Chinese Tibetan Plateau using Geostationary...Disaster weather forecasting is becoming increasingly important. In this paper, the trajectories of Mesoscale Convective Systems (MCSs) were automatically tracked over the Chinese Tibetan Plateau using Geostationary Meteorological Satellite (GMS) brightness temperature (Tbb) from June to August 1998, and the MCSs are classified according to their movement direction. Based on these, spatial data mining methods are used to study the relationships between MCSs trajectories and their environmental physical field values. Results indicate that at 400hPa level, the trajectories of MCSs moving across the 105°E boundary are less influenced by water vapor flux divergence, vertical wind velocity, reIative humidity and K index. In addition, if the gravity central longitude locations of MCSs are between 104°E and 105°E, then geopotential height and wind divergence are two main factors in movement causation. On the other hand, at 500hPa level, the trajectories of MCSs in a north-east direction are mainly influenced by K index and water vapor flux divergence when their central locations are less than 104°E. However, the MCSs moving in an east and south-east direction are influenced by a few correlation factors at this level.展开更多
A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery,...A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery, their largescale meteorological conditions, and convective available potential energy (CAPE) are analyzed. It is found that similar diurnal evolution is present in all these MCSs. Their initial convective activities became active at noon LST by solar heating, and then built up rapidly. They formed and reached a peak in the early evening hours around 1800 LST and then abated gradually. Among them, the strongest and largest is the MCS on 26 July, which developed under the conditions of the great upper-level nearly-circular Qinghai-Xizang anticyclonic high and driven by the strong low-level thermal forcing and conditional instability. All these conditions are intimately linked with the thermal effects of the plateau itself. So its development was mainly associated with the relatively pure thermal effects peculiar to the Qinghai-Xizang Plateau. The next strongest one is the MCS on 28 July, which was affected notably by the baroclinic zone linked with the westerly trough. There are different features and development mechanisms between these two strongest MCSs.展开更多
Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system ...Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.展开更多
The impacts of soil moisture(SM) on heavy rainfall and the development of Mesoscale Convection Systems(MCSs) are investigated through 24-h numerical simulations of two heavy rainfall events that occurred respectively ...The impacts of soil moisture(SM) on heavy rainfall and the development of Mesoscale Convection Systems(MCSs) are investigated through 24-h numerical simulations of two heavy rainfall events that occurred respectively on28 March 2009(Case 1) and 6 May 2010(Case 2) over southern China. The numerical simulations were carried out with WRF and its coupled Noah LSM(Land Surface Model). First, comparative experiments were driven by two different SM data sources from NCEP-FNL and NASA-GLDAS. Secondary, with the run driven by NASA-GLDAS data as a control one, a series of sensitivity tests with different degree of(20%, 60%) increase or decrease in the initial SM were performed to examine the impact of SM on the simulations. Comparative experiment results show that the 24-h simulated cumulative rainfall distributions are not substantially affected by the application of the two different SM data,while the precipitation intensity is changed to some extent. Forecast skill scores show that simulation with NASA-GLDAS SM data can lead to some improvement, especially in the heavy rain(芏50 mm) forecast, where there is up to 5% increase in the TS score. Sensitivity test analysis found that a predominantly positive feedback of SM on precipitation existed in these two heavy rain events but not with completely the same features. Organization of the heavy rainfall-producing MCS seems to have an impact on the feedback process between SM and precipitation. For Case 1, the MCS was poorly organized and occurred locally in late afternoon, and the increase of SM only caused a slight enhancement of precipitation. Drier soil was found to result in an apparent decrease of rainfall intensity,indicating that precipitation is more sensitive to SM reduction. For Case 2, as the heavy rain was caused by a well-organized MCS with sustained precipitation, the rainfall is more sensitive to SM increase, which brings more rainfall. Additionally, distinctive feedback effects were identified from different stages and different organization of MCS, with strong feedback between SM and precipitation mainly appearing in the early stages of the poorly organized MCS and during the late period of the well-organized MCS.展开更多
The paper gives the distributions of the daily mean temperature of black body of satellite infrared images from June 7 to 10, 1998 during HUAMEX and examines 14 meso-α-scale convective systems and a number of meso-b-...The paper gives the distributions of the daily mean temperature of black body of satellite infrared images from June 7 to 10, 1998 during HUAMEX and examines 14 meso-α-scale convective systems and a number of meso-b-scale convective systems using the satellite infrared images at 1-h intervals. The mesoscale convective systems on June 7 and 9, which resulted in severe rainstorm over the middle of Taiwan and the estuary region of the Pearl River (Zhujiang R.), are emphatically analyzed. The serial development of mesoscale convective systems is revealed by the distributions of the black body temperature of satellite infrared images. The environmental conditions in which many mesoscale convective systems continuously occurred are diagnosed. The visualizing tool, LiveView, displays the link between the upper and lower horizontal wind fields and the vertical circulations and 3-dimensional trajectories of moist air motions, based on the data of objective analyses.展开更多
Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which th...Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.展开更多
A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed...A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices.展开更多
Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) meso...Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) mesoscale convective system (MCS) over Beijing on 31 July 2007. Most of the lightning in the LLTS-MCS was intracloud (IC) lightning, while the mean ratio of positive cloud-to-ground (+CG) lightning to –CG lightning was 1:4, which was higher than the average value from previous studies. The majority of CG lightning occurred in the convective region of the radar echo, particularly at the leading edge of the front. Little IC lightning and little +CG lightning occurred in the stratiform region. The distribution of the CG lightning indicated that the storm had a tilted dipole structure given the wind shear or the tripole charge structure. During the storm’s development, most of the IC lightning occurred at an altitude of ~9.5 km; the lightning rate reached its maximum at 10.5 km, the altitude of IC lightning in the mature stage of the storm. When the thunderstorm began to dissipate, the altitude of the IC lightning decreased gradually. The spatial distribution of lightning was well correlated with the rainfall on the ground, although the peak value of rainfall appeared 75 min later than the peak lightning rate.展开更多
In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system(MCS) on 30 July 2015 in Shandong Province, China, with...In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system(MCS) on 30 July 2015 in Shandong Province, China, with a long-baseline lightning location network of very-low-frequency/low-frequency magnetic field sensors. The results show that almost all of these cloud-to-ground(CG) strokes are produced during the mature stage of the MCS, and are predominantly located in the trailing stratiform region, which is similar to analyses of sprite-productive MCSs in North America and Europe. Comparison between the location results for the sprite-producing CG strokes and those provided by the World Wide Lightning Location Network(WWLLN) indicates that the location accuracy of WWLLN for intense CG strokes in Shandong Province is typically within 10 km, which is consistent with the result based on analysis of 2838 sprite-producing CG strokes in the continental United States. Also, we analyze two cases where some minor lightning discharges in the parent flash of sprites can also be located, providing an approach to confine the thundercloud region tapped by the sprite-producing CG strokes.展开更多
Sprites are brief optical emissions occurring above thunderstorms. Features of sprites and their parent thunderstorms and lightning activities have been studied by many researchers. Here, we report a single sprite rec...Sprites are brief optical emissions occurring above thunderstorms. Features of sprites and their parent thunderstorms and lightning activities have been studied by many researchers. Here, we report a single sprite recorded over a mesoscale convective system during its life cycle in Northeast China. The results show that the sprite might have been a dancing one, with a 20 km horizontal displacement from its parent cloud-to-ground flash (CG) and a 38 ms time delay; all the sprite elements occurred during the continuing current process of the parent flash. The peak current of the parent CG was the largest during the almost one-hour time window containing the sprite, and the absolute values of all the negative flashes were smaller than 100 kA during the same time period and did not produce sprite. The sprite did not occur during the time period in which the maximum area of the thunderstorm reached. The occurrence of sprite corresponded well with the decay of the thunderstorm convection, and no significant relationship between the occurrence of sprite and the increase in the 30-35 dBZ and 35-40 dBZ interval was found. The large wind gradient in the 8-12 km region of the thunderstorm may have played an important role in the sprite production.展开更多
A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 is simulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). The results obtained are...A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 is simulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). The results obtained are inspiring and are as follows. (1) The model simulates well the largescale conditions in which the MCS concerned is embedded, which are the well-known anticyclonic Qinghai-Xizang Plateau High in the upper layers and the strong thermal forcing in the lower layers. In particular, the model captures the meso-α scale cyclonic vortex associated with the MCS, which can be analyzed in the 500 hPa observational winds; and to some degree, the model reproduces even its meso-β scale substructure similar to satellite images, reflected in the model-simulated 400 hPa rainwater. On the other hand, there are some distinct deficiencies in the simulation; for example, the simulated MCS occurs with a lag of 3 hours and a westward deviation of 3–5° longitude. (2) The structure and evolution of the meso-α scale vortex associated with the MCS are undescribable for upper-air sounding data. The vortex is confined to the lower troposphere under 450 hPa over the plateau and shrinks its extent with height, with a diameter of 4° longitude at 500 hPa. It is within the updraft area, but with an upper-level anticyclone and downdraft over it. The vortex originates over the plateau, and does not form until the mature stage of the MCS. It lasts for 3–6 hours. In its processes of both formation and decay, the change in geopotential height field is prior to that in the wind field. It follows that the vortex is closely associated with the thermal effects over the plateau. (3) A series of sensitivity experiments are conducted to investigate the impact of various surface thermal forcings and other physical processes on the MCS over the plateau. The results indicate that under the background conditions of the upper-level Qinghai-Xizang High, the MCS involved is mainly dominated by the low-level thermal forcing. The simulation described here is a good indication that it may be possible to reproduce the MCS over the plateau under certain large-scale conditions and with the incorporation of proper thermal physics in the lower layers.展开更多
The split characteristics of the tropical Mesoscale Convective System (MCS) of April 9, 2018, in northern Ghana were studied using infrasound data measured by the mobile array (I68CI) which was deployed by C<span s...The split characteristics of the tropical Mesoscale Convective System (MCS) of April 9, 2018, in northern Ghana were studied using infrasound data measured by the mobile array (I68CI) which was deployed by C<span style="white-space:nowrap;">?</span>te d’Ivoire National Data Center (NDC) in collaboration with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These infrasound measurements were made during a measurement campaign from January 1st, 2018 to December 31, 2018, in northeast Cote d’Ivoire, precisely in Comoe National Park. Graphic Progressive Multi-Channel Correlation (GPMCC) method based on a progressive study of the correlation functions was used to analyze and visualize data. The infrasound detection from this MCS shows clearly a division of the MCS structure into 2 distinct subsystems under the effect of internal and external constraints not well known but related to convection;a smaller subsystem in the north, associated with an area of intense rainfall of about 30 mm/hour and located at 9.5<span style="white-space:nowrap;">°</span>N - 2<span style="white-space:nowrap;">°</span>E with an azimuth of 70<span style="white-space:nowrap;">°</span> and, a large subsystem in the south, associated with a zone of high rainfall of about 96 mm/hour and located at 8.8<span style="white-space:nowrap;">°</span>N - 1.4<span style="white-space:nowrap;">°</span>E with an azimuth of 90<span style="white-space:nowrap;">°</span>. These two subsystems were located 200 km and 260 km from the I68CI station with frequencies of 2.3 Hz and 1 Hz respectively. The mesoscale convective systems in this region are moving from East to West and including several storm cells.展开更多
This paper uses the daily precipitation observation data and Doppler weather radar observation data from 2017 observatories and regional automatic stations in Fujian, China from 2009 to 2015. The characteristics of fo...This paper uses the daily precipitation observation data and Doppler weather radar observation data from 2017 observatories and regional automatic stations in Fujian, China from 2009 to 2015. The characteristics of formation mode, organization mode, moving direction and duration of linear mesoscale convective system during non-typhoon continuous rainstorm in Fujian were analyzed. This paper gives the definition of linear mesoscale convective systems, trailing and parallel mesoscale convective systems. The above characteristics of the linear mesoscale convective system during the continuous heavy rain in Fujian differ greatly from the non-sustained heavy rain process: The linear mesoscale convective system in the continuous heavy rain in Fujian is mainly constructed later, and the trailing and parallel mesoscale convective system is conducive to the occurrence of continuous heavy rain in Fujian. The moving direction of the linear mesoscale convective system and convective monomer is mainly in the east direction, and the system duration is mostly 4 - 10 hours. The formation time of the monomer to form a linear convection time is mainly 1 - 3 hours, which is 2 hours earlier than the organization process of the general linear mesoscale convective system. The linear convective system formed to a dead time of an average of 5 hours, slightly longer than the general linear mesoscale convective system.展开更多
The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the...The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a previous severe MCS. A closed vortex circulation can be found below 600 hPa with a vorticity maximum in the middle troposphere. The evolution process of the MCV can be divided into three stages: initiation, maturation, and dissipation. During the mature stage of the MCV, a downdraft occurred in the center of the MCV and new convection developed in southeast of the MCV. The convergence and the tilting in the lower troposphere convergence and vertical advection in the middle troposphere were the main vorticity sources in the MCV initiation stage. Finally, a conceptual model between the mei-yu front and the embedded MCS and MCV is proposed. The mei-yu front was the background condition for the development of the MCS and MCV. A low level jet (LLJ) transported moisture and the weak cold air invasion via a trough aloft in the middle troposphere and triggering the severe convection. Furthermore, the intensified jet was able to result in the initiation of new "secondary" areas of convection in the eastern part of the MCV.展开更多
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulate...The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.展开更多
A direct numerical simulation(DNS) method is used to calculate the partitioned convection system with Ra number ranging from 10^7 to 2×10^9.Using the boundary layer thickness to normalize the height of gaps d, we...A direct numerical simulation(DNS) method is used to calculate the partitioned convection system with Ra number ranging from 10^7 to 2×10^9.Using the boundary layer thickness to normalize the height of gaps d, we find a strong consistency between the variation of the TD number(the average value of the temperature in each heat transfer channel is averaged after taking the absolute values) with the change of the height of gaps and the variation of the TD number with the change of Ra number in partitioned convection.For a given thickness of partition, heights of gaps are approximately equal to 0.5 or 1 time of the thermal boundary layer thickness λθ at different Ra numbers.TD number representing temperature characteristics is almost the constant value, which means that TD number is a function of d/λθ only.Analysis of local temperature field of area in gaps shows that the temperature distribution in the gaps are basically the same when d/λθ is certain.The heat transfer Nu number of the system at d/λθ≈ 0.5 is larger than that of d/λθ≈ 1, both of them have the same scaling law with Ra number and Nu^Ra^0.25.展开更多
Zoning in ore bodies, ore deposits and ore regions are recognized as temporal-spatial structures generated by the dynamics of ore- forming processes. Viewed from the theory of dissipative structures, ore zoning is a k...Zoning in ore bodies, ore deposits and ore regions are recognized as temporal-spatial structures generated by the dynamics of ore- forming processes. Viewed from the theory of dissipative structures, ore zoning is a kind of self-organization phenomenon occurring in far from-equilibrium geochemical dynamic systems. Therefore,kinetic and dynamic approaches must be taken to reveal the mechanisms of ore zoning. Two dominant coupling processes leading to ore zoning——reaction-transport feedbacks and double-diffusive convection——are discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.41375051 and 41505038)
文摘Severe weather reports and composite radar reflectivity data from 2010-14 over North China were used to analyze the distribution of severe convective wind(SCW) events and their organizational modes of radar reflectivity. The six organizational modes for SCW events(and their proportions) were cluster cells(35.4%), squall lines(18.4%), nonlinear-shaped systems(17.8%), broken lines(11.6%), individual cells(1.2%), and bow echoes(0.5%). The peak month for both squall lines and broken lines was June, whereas it was July for the other four modes. The highest numbers of SCW events were over the mountains, which were generally associated with disorganized systems of cluster cells. In contrast, SCW associated with linear systems occurred mainly over the plains, where stations recorded an average of less than one SCW event per year. Regions with a high frequency of SCW associated with nonlinear-shaped systems also experienced many SCW events associated with squall lines. Values of convective available potential energy, precipitable water, 0-3-km shear, and 0-6-km shear, were demonstrably larger over the plains than over the mountains, which had an evident effect on the organizational modes of SCW events. Therefore, topography may be an important factor in the organizational modes for SCW events over North China.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1507200)the National Natural Science Foundation of China(Grant No.41975057).
文摘Based on the previous statistical analysis of mesoscale convective systems(MCSs)over the second-step terrain along Yangtze-Huaihe River Valley,eight representative long-lived eastward-propagating MCSs are selected for model-based sensitivity testing to investigate the initiation and evolution of these types of MCSs as well as their impact on downstream areas.We subject each MCS to a semi-idealized(CNTL)simulation and a sensitivity(NOLH)simulation that neglects condensational heating in the formation region.The CNTL experiment reveals convection forms in the region downstream of a shortwave trough typified by persistent southwesterly winds in the low-to midtroposphere.Upon merging with other convective systems,moist convection develops into an MCS,which propagates eastward under the influence of mid-tropospheric westerlies,and moves out of the second-step terrain.The MCS then merges with pre-existing local convection over the plains;the merged convection reinforces the cyclonic wind perturbation into a mesoscale vortex at 850 hPa.While this vortex moves eastward to regions with local vortex at 850 hPa,another vortex at 925 hPa is also intensified.Finally,the vortices at 850 and 925 hPa merge together and develop into a mesoscale convective vortex(MCV).In contrast,MCSs fail to form and move eastward in the NOLH experiment.In the absence of eastward-propagating MCSs,moist convection and mesoscale vortices still appear in the plains,but the vortex strength and precipitation intensity are significantly weakened.It is suggested the eastward-propagating MCSs over the second-step terrain significantly impact the development and enhancement of moist convection and vortices in the downstream areas.
基金Under the auspices of the National Natural Science Foundation of China (No. 40371080), Key Project of ChineseMinistry of Education (No. 104083), Foundation of Wuhan University State Key Laboratory of Information Engineering in Survey-ing, Mapping and Remote Sensing (No. WKL(03) 0103), the Scientific Research Foundation for the Returned Overseas ChineseScholars, Ministry of Education
文摘In this paper, Geostationary Meteorological Satellite (GMS) infrared black-body temperature (Tbb) data from June to August 1998 are used to automatically track the activity of Mesoscale Convective System (MCS) over the Tibetan Plateau in China. Consequently, the features of MCS, such as area, intensity, life cycle, activity region and shape, are obtained. High Resolution Limited Area Analysis and Forecasting System (HLAFS) values provided by China National Meteorological Center are used to study the relationships between the MCS trajectories and their environmental physical field values, based on the distribution and trajectories of MCSs over the Tibetan Plateau. Favorable environmental physical field charts of influencing MCS movement out of the Tibetan Plateau in different UTC (Universal Time Coordinate) are developed by using spatial data mining techniques at levels of 400hPa and 500hPa, respectively.
文摘Disaster weather forecasting is becoming increasingly important. In this paper, the trajectories of Mesoscale Convective Systems (MCSs) were automatically tracked over the Chinese Tibetan Plateau using Geostationary Meteorological Satellite (GMS) brightness temperature (Tbb) from June to August 1998, and the MCSs are classified according to their movement direction. Based on these, spatial data mining methods are used to study the relationships between MCSs trajectories and their environmental physical field values. Results indicate that at 400hPa level, the trajectories of MCSs moving across the 105°E boundary are less influenced by water vapor flux divergence, vertical wind velocity, reIative humidity and K index. In addition, if the gravity central longitude locations of MCSs are between 104°E and 105°E, then geopotential height and wind divergence are two main factors in movement causation. On the other hand, at 500hPa level, the trajectories of MCSs in a north-east direction are mainly influenced by K index and water vapor flux divergence when their central locations are less than 104°E. However, the MCSs moving in an east and south-east direction are influenced by a few correlation factors at this level.
基金the Chinese National Climbing Project"The Tibetan Plateau Meteorological Experiment"and in part by the Naltional Natural Science Foundation of China under Grant No.49675296.
文摘A series of mesoscale convective systems (MCSs) occurred daily over the Qinghai-Xizang Plateau during 25–28 July 1995. In this paper, their physical characteristics and evolutions based on infrared satellite imagery, their largescale meteorological conditions, and convective available potential energy (CAPE) are analyzed. It is found that similar diurnal evolution is present in all these MCSs. Their initial convective activities became active at noon LST by solar heating, and then built up rapidly. They formed and reached a peak in the early evening hours around 1800 LST and then abated gradually. Among them, the strongest and largest is the MCS on 26 July, which developed under the conditions of the great upper-level nearly-circular Qinghai-Xizang anticyclonic high and driven by the strong low-level thermal forcing and conditional instability. All these conditions are intimately linked with the thermal effects of the plateau itself. So its development was mainly associated with the relatively pure thermal effects peculiar to the Qinghai-Xizang Plateau. The next strongest one is the MCS on 28 July, which was affected notably by the baroclinic zone linked with the westerly trough. There are different features and development mechanisms between these two strongest MCSs.
基金supported jointly by the National Key Basic Research and Development (973) Program of China (Grant No. 2014CB441401)the National Natural Science Foundation of China (Grant Nos. 41405007, 41175043, 41475002, and 41205027)
文摘Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.
基金National Natural Science Foundation of China(40775068)Open Project for State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(2009LASW-B03)Special Fund for Meteorological Scientific Research in the Public Interest(GYHY201106003,GYHY201406009)
文摘The impacts of soil moisture(SM) on heavy rainfall and the development of Mesoscale Convection Systems(MCSs) are investigated through 24-h numerical simulations of two heavy rainfall events that occurred respectively on28 March 2009(Case 1) and 6 May 2010(Case 2) over southern China. The numerical simulations were carried out with WRF and its coupled Noah LSM(Land Surface Model). First, comparative experiments were driven by two different SM data sources from NCEP-FNL and NASA-GLDAS. Secondary, with the run driven by NASA-GLDAS data as a control one, a series of sensitivity tests with different degree of(20%, 60%) increase or decrease in the initial SM were performed to examine the impact of SM on the simulations. Comparative experiment results show that the 24-h simulated cumulative rainfall distributions are not substantially affected by the application of the two different SM data,while the precipitation intensity is changed to some extent. Forecast skill scores show that simulation with NASA-GLDAS SM data can lead to some improvement, especially in the heavy rain(芏50 mm) forecast, where there is up to 5% increase in the TS score. Sensitivity test analysis found that a predominantly positive feedback of SM on precipitation existed in these two heavy rain events but not with completely the same features. Organization of the heavy rainfall-producing MCS seems to have an impact on the feedback process between SM and precipitation. For Case 1, the MCS was poorly organized and occurred locally in late afternoon, and the increase of SM only caused a slight enhancement of precipitation. Drier soil was found to result in an apparent decrease of rainfall intensity,indicating that precipitation is more sensitive to SM reduction. For Case 2, as the heavy rain was caused by a well-organized MCS with sustained precipitation, the rainfall is more sensitive to SM increase, which brings more rainfall. Additionally, distinctive feedback effects were identified from different stages and different organization of MCS, with strong feedback between SM and precipitation mainly appearing in the early stages of the poorly organized MCS and during the late period of the well-organized MCS.
基金National Scaling 95-special project-03 Natural Science Foundation of China (49735180) Foundation for Visiting Scholars for Higher Education Colleges
文摘The paper gives the distributions of the daily mean temperature of black body of satellite infrared images from June 7 to 10, 1998 during HUAMEX and examines 14 meso-α-scale convective systems and a number of meso-b-scale convective systems using the satellite infrared images at 1-h intervals. The mesoscale convective systems on June 7 and 9, which resulted in severe rainstorm over the middle of Taiwan and the estuary region of the Pearl River (Zhujiang R.), are emphatically analyzed. The serial development of mesoscale convective systems is revealed by the distributions of the black body temperature of satellite infrared images. The environmental conditions in which many mesoscale convective systems continuously occurred are diagnosed. The visualizing tool, LiveView, displays the link between the upper and lower horizontal wind fields and the vertical circulations and 3-dimensional trajectories of moist air motions, based on the data of objective analyses.
基金supported by the National Key Research and Development Program on Monitoring, Early Warning and Prevention of Major Natural Disasters (Grant No. 2018YFC1506006)the National Natural Science Foundation of China (Project Nos. 41875108 and 41475037)
文摘Deep convection systems (DCSs) can rapidly lift water vapor and other pollutants from the lower troposphere to the upper troposphere and lower stratosphere. The main detrainment height determines the level to which the air parcel is lifted. We analyzed the main detrainment height over the Tibetan Plateau and its southern slope based on the CloudSat Cloud Profiling Radar 2B_GEOPROF dataset and the Aura Microwave Limb Sounder Level 2 cloud ice product onboard the Atrain constellation of Earth-observing satellites. It was found that the DCSs over the Tibetan Plateau and its southern slope have a higher main detrainment height (about 10-16 km) than other regions in the same latitude. The mean main detrainment heights are 12.9 and 13.3 km over the Tibetan Plateau and its southern slope, respectively. The cloud ice water path decreases by 16.8% after excluding the influences of DCSs, and the height with the maximum increase in cloud ice water content is located at 178 hPa (about 13 km). The main detrainment height and outflow horizontal range are higher and larger over the central and eastern Tibetan Plateau, the west of the southern slope, and the southeastern edge of the Tibetan Plateau than that over the northwestern Tibetan Plateau. The main detrainment height and outflow horizontal range are lower and broader at nighttime than during daytime.
基金supported by Jiangsu Education Science Foundation (Grant No.07KJB170065)Chinese National Science Foundation (Grant No.40775060)U.S.National Science Foundation (Grant No.ATM0758609)
文摘A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices.
基金supported by the National Natural Science Foundation of China(Grant No. 40930949)Key Subject Project of Beijing Atmospheric Physics and Environment,the One Hundred Person Project of the Chinese Academy of Sciences
文摘Data from the Beijing SAFIR 3000 lightning detection system and Doppler radar provided some insights into the three-dimensional lightning structure and evolution of a leading-line and trailing-stratiform (LLTS) mesoscale convective system (MCS) over Beijing on 31 July 2007. Most of the lightning in the LLTS-MCS was intracloud (IC) lightning, while the mean ratio of positive cloud-to-ground (+CG) lightning to –CG lightning was 1:4, which was higher than the average value from previous studies. The majority of CG lightning occurred in the convective region of the radar echo, particularly at the leading edge of the front. Little IC lightning and little +CG lightning occurred in the stratiform region. The distribution of the CG lightning indicated that the storm had a tilted dipole structure given the wind shear or the tripole charge structure. During the storm’s development, most of the IC lightning occurred at an altitude of ~9.5 km; the lightning rate reached its maximum at 10.5 km, the altitude of IC lightning in the mature stage of the storm. When the thunderstorm began to dissipate, the altitude of the IC lightning decreased gradually. The spatial distribution of lightning was well correlated with the rainfall on the ground, although the peak value of rainfall appeared 75 min later than the peak lightning rate.
基金supported by the National Key Basic Research and Development (973) Program of China (Grant No. 2014CB441405)the Open Research Program of the Key Laboratory of Meteorological Disaster (Nanjing University of Information Science and Technology) of the Ministry of Education (Grant No. KLME1414)+2 种基金the National Natural Science Foundation of China (Grant No. 41574179)the Natural Science Foundation of Excellent Youth Program of China (Grant No. 41622501)“The Hundred Talents Program” of the Chinese Academy of Sciences (Grant No. 2013068)
文摘In this paper, we report the location results for the parent lightning strokes of more than 30 red sprites observed over an asymmetric mesoscale convective system(MCS) on 30 July 2015 in Shandong Province, China, with a long-baseline lightning location network of very-low-frequency/low-frequency magnetic field sensors. The results show that almost all of these cloud-to-ground(CG) strokes are produced during the mature stage of the MCS, and are predominantly located in the trailing stratiform region, which is similar to analyses of sprite-productive MCSs in North America and Europe. Comparison between the location results for the sprite-producing CG strokes and those provided by the World Wide Lightning Location Network(WWLLN) indicates that the location accuracy of WWLLN for intense CG strokes in Shandong Province is typically within 10 km, which is consistent with the result based on analysis of 2838 sprite-producing CG strokes in the continental United States. Also, we analyze two cases where some minor lightning discharges in the parent flash of sprites can also be located, providing an approach to confine the thundercloud region tapped by the sprite-producing CG strokes.
基金supported jointly by the National Natural Science Foundation of China(Grant Nos.41374153 and 41574141)the High Resolution Earth Observation Funds for Young Scientists(Grant No.GFZX04060103-711)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2013053)
文摘Sprites are brief optical emissions occurring above thunderstorms. Features of sprites and their parent thunderstorms and lightning activities have been studied by many researchers. Here, we report a single sprite recorded over a mesoscale convective system during its life cycle in Northeast China. The results show that the sprite might have been a dancing one, with a 20 km horizontal displacement from its parent cloud-to-ground flash (CG) and a 38 ms time delay; all the sprite elements occurred during the continuing current process of the parent flash. The peak current of the parent CG was the largest during the almost one-hour time window containing the sprite, and the absolute values of all the negative flashes were smaller than 100 kA during the same time period and did not produce sprite. The sprite did not occur during the time period in which the maximum area of the thunderstorm reached. The occurrence of sprite corresponded well with the decay of the thunderstorm convection, and no significant relationship between the occurrence of sprite and the increase in the 30-35 dBZ and 35-40 dBZ interval was found. The large wind gradient in the 8-12 km region of the thunderstorm may have played an important role in the sprite production.
基金the Chinese National Climbing Project"The Tibetan PlateauMeteorological Experiment"and in part by the NationalNatural Science Foundation of China under Grant No.49675296.
文摘A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 is simulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). The results obtained are inspiring and are as follows. (1) The model simulates well the largescale conditions in which the MCS concerned is embedded, which are the well-known anticyclonic Qinghai-Xizang Plateau High in the upper layers and the strong thermal forcing in the lower layers. In particular, the model captures the meso-α scale cyclonic vortex associated with the MCS, which can be analyzed in the 500 hPa observational winds; and to some degree, the model reproduces even its meso-β scale substructure similar to satellite images, reflected in the model-simulated 400 hPa rainwater. On the other hand, there are some distinct deficiencies in the simulation; for example, the simulated MCS occurs with a lag of 3 hours and a westward deviation of 3–5° longitude. (2) The structure and evolution of the meso-α scale vortex associated with the MCS are undescribable for upper-air sounding data. The vortex is confined to the lower troposphere under 450 hPa over the plateau and shrinks its extent with height, with a diameter of 4° longitude at 500 hPa. It is within the updraft area, but with an upper-level anticyclone and downdraft over it. The vortex originates over the plateau, and does not form until the mature stage of the MCS. It lasts for 3–6 hours. In its processes of both formation and decay, the change in geopotential height field is prior to that in the wind field. It follows that the vortex is closely associated with the thermal effects over the plateau. (3) A series of sensitivity experiments are conducted to investigate the impact of various surface thermal forcings and other physical processes on the MCS over the plateau. The results indicate that under the background conditions of the upper-level Qinghai-Xizang High, the MCS involved is mainly dominated by the low-level thermal forcing. The simulation described here is a good indication that it may be possible to reproduce the MCS over the plateau under certain large-scale conditions and with the incorporation of proper thermal physics in the lower layers.
文摘The split characteristics of the tropical Mesoscale Convective System (MCS) of April 9, 2018, in northern Ghana were studied using infrasound data measured by the mobile array (I68CI) which was deployed by C<span style="white-space:nowrap;">?</span>te d’Ivoire National Data Center (NDC) in collaboration with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These infrasound measurements were made during a measurement campaign from January 1st, 2018 to December 31, 2018, in northeast Cote d’Ivoire, precisely in Comoe National Park. Graphic Progressive Multi-Channel Correlation (GPMCC) method based on a progressive study of the correlation functions was used to analyze and visualize data. The infrasound detection from this MCS shows clearly a division of the MCS structure into 2 distinct subsystems under the effect of internal and external constraints not well known but related to convection;a smaller subsystem in the north, associated with an area of intense rainfall of about 30 mm/hour and located at 9.5<span style="white-space:nowrap;">°</span>N - 2<span style="white-space:nowrap;">°</span>E with an azimuth of 70<span style="white-space:nowrap;">°</span> and, a large subsystem in the south, associated with a zone of high rainfall of about 96 mm/hour and located at 8.8<span style="white-space:nowrap;">°</span>N - 1.4<span style="white-space:nowrap;">°</span>E with an azimuth of 90<span style="white-space:nowrap;">°</span>. These two subsystems were located 200 km and 260 km from the I68CI station with frequencies of 2.3 Hz and 1 Hz respectively. The mesoscale convective systems in this region are moving from East to West and including several storm cells.
文摘This paper uses the daily precipitation observation data and Doppler weather radar observation data from 2017 observatories and regional automatic stations in Fujian, China from 2009 to 2015. The characteristics of formation mode, organization mode, moving direction and duration of linear mesoscale convective system during non-typhoon continuous rainstorm in Fujian were analyzed. This paper gives the definition of linear mesoscale convective systems, trailing and parallel mesoscale convective systems. The above characteristics of the linear mesoscale convective system during the continuous heavy rain in Fujian differ greatly from the non-sustained heavy rain process: The linear mesoscale convective system in the continuous heavy rain in Fujian is mainly constructed later, and the trailing and parallel mesoscale convective system is conducive to the occurrence of continuous heavy rain in Fujian. The moving direction of the linear mesoscale convective system and convective monomer is mainly in the east direction, and the system duration is mostly 4 - 10 hours. The formation time of the monomer to form a linear convection time is mainly 1 - 3 hours, which is 2 hours earlier than the organization process of the general linear mesoscale convective system. The linear convective system formed to a dead time of an average of 5 hours, slightly longer than the general linear mesoscale convective system.
基金supported by the project of State Key Labo-ratory of Severe Weather, Chinese Academy of Meteoro-logical Sciences (No. 2009LASW-A03) the National Natural Science Foundation of China under Grants Nos.40875021 and 40930951
文摘The strong heavy rainfall on 3–5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a previous severe MCS. A closed vortex circulation can be found below 600 hPa with a vorticity maximum in the middle troposphere. The evolution process of the MCV can be divided into three stages: initiation, maturation, and dissipation. During the mature stage of the MCV, a downdraft occurred in the center of the MCV and new convection developed in southeast of the MCV. The convergence and the tilting in the lower troposphere convergence and vertical advection in the middle troposphere were the main vorticity sources in the MCV initiation stage. Finally, a conceptual model between the mei-yu front and the embedded MCS and MCV is proposed. The mei-yu front was the background condition for the development of the MCS and MCV. A low level jet (LLJ) transported moisture and the weak cold air invasion via a trough aloft in the middle troposphere and triggering the severe convection. Furthermore, the intensified jet was able to result in the initiation of new "secondary" areas of convection in the eastern part of the MCV.
基金This research was supported by the National Natural Science Foundation of China under Grant Nos. 40325014, 40333031SRFDP, TRAP0YT, FANEDD 11999, and under the support of The Key Scientific and Technological Project of the Ministry of Education The State Key Basic Research Program (Grant No. 2004CB18300).
文摘The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales. Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11772362 and 11452002)the Special Scientific Research Fund for Super Computing in the Joint Fund of the National Natural Science Foundation of China and the People’s Government of Guangdong Province,China(Phase Ⅱ,nsfc2015_570)
文摘A direct numerical simulation(DNS) method is used to calculate the partitioned convection system with Ra number ranging from 10^7 to 2×10^9.Using the boundary layer thickness to normalize the height of gaps d, we find a strong consistency between the variation of the TD number(the average value of the temperature in each heat transfer channel is averaged after taking the absolute values) with the change of the height of gaps and the variation of the TD number with the change of Ra number in partitioned convection.For a given thickness of partition, heights of gaps are approximately equal to 0.5 or 1 time of the thermal boundary layer thickness λθ at different Ra numbers.TD number representing temperature characteristics is almost the constant value, which means that TD number is a function of d/λθ only.Analysis of local temperature field of area in gaps shows that the temperature distribution in the gaps are basically the same when d/λθ is certain.The heat transfer Nu number of the system at d/λθ≈ 0.5 is larger than that of d/λθ≈ 1, both of them have the same scaling law with Ra number and Nu^Ra^0.25.
文摘Zoning in ore bodies, ore deposits and ore regions are recognized as temporal-spatial structures generated by the dynamics of ore- forming processes. Viewed from the theory of dissipative structures, ore zoning is a kind of self-organization phenomenon occurring in far from-equilibrium geochemical dynamic systems. Therefore,kinetic and dynamic approaches must be taken to reveal the mechanisms of ore zoning. Two dominant coupling processes leading to ore zoning——reaction-transport feedbacks and double-diffusive convection——are discussed.