As deep learning techniques such as Convolutional Neural Networks(CNNs)are widely adopted,the complexity of CNNs is rapidly increasing due to the growing demand for CNN accelerator system-on-chip(SoC).Although convent...As deep learning techniques such as Convolutional Neural Networks(CNNs)are widely adopted,the complexity of CNNs is rapidly increasing due to the growing demand for CNN accelerator system-on-chip(SoC).Although conventional CNN accelerators can reduce the computational time of learning and inference tasks,they tend to occupy large chip areas due to many multiply-and-accumulate(MAC)operators when implemented in complex digital circuits,incurring excessive power consumption.To overcome these drawbacks,this work implements an analog convolutional filter consisting of an analog multiply-and-accumulate arithmetic circuit along with an analog-to-digital converter(ADC).This paper introduces the architecture of an analog convolutional kernel comprised of low-power ultra-small circuits for neural network accelerator chips.ADC is an essential component of the analog convolutional kernel used to convert the analog convolutional result to digital values to be stored in memory.This work presents the implementation of a highly low-power and area-efficient 12-bit Successive Approximation Register(SAR)ADC.Unlink most other SAR-ADCs with differential structure;the proposed ADC employs a single-ended capacitor array to support the preceding single-ended max-pooling circuit along with minimal power consumption.The SARADCimplementation also introduces a unique circuit that reduces kick-back noise to increase performance.It was implemented in a test chip using a 55 nm CMOS process.It demonstrates that the proposed ADC reduces Kick-back noise by 40%and consequently improves the ADC’s resolution by about 10%while providing a near rail-to-rail dynamic rangewith significantly lower power consumption than conventional ADCs.The ADC test chip shows a chip size of 4600μm^(2)with a power consumption of 6.6μW while providing an signal-to-noise-and-distortion ratio(SNDR)of 68.45 dB,corresponding to an effective number of bits(ENOB)of 11.07 bits.展开更多
Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learnin...Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learning have attracted widespread attention.Most existing methods use 3×3 small kernel convolution to extract image features and embed the watermarking.However,the effective perception fields for small kernel convolution are extremely confined,so the pixels that each watermarking can affect are restricted,thus limiting the performance of the watermarking.To address these problems,we propose a watermarking network based on large kernel convolution and adaptive weight assignment for loss functions.It uses large-kernel depth-wise convolution to extract features for learning large-scale image information and subsequently projects the watermarking into a highdimensional space by 1×1 convolution to achieve adaptability in the channel dimension.Subsequently,the modification of the embedded watermarking on the cover image is extended to more pixels.Because the magnitude and convergence rates of each loss function are different,an adaptive loss weight assignment strategy is proposed to make theweights participate in the network training together and adjust theweight dynamically.Further,a high-frequency wavelet loss is proposed,by which the watermarking is restricted to only the low-frequency wavelet sub-bands,thereby enhancing the robustness of watermarking against image compression.The experimental results show that the peak signal-to-noise ratio(PSNR)of the encoded image reaches 40.12,the structural similarity(SSIM)reaches 0.9721,and the watermarking has good robustness against various types of noise.展开更多
Optical proximity correction (OPC) systems require an accurate and fast way to predict how patterns will be transferred to the wafer.Based on Gabor's 'reduction to principal waves',a partially coherent ima...Optical proximity correction (OPC) systems require an accurate and fast way to predict how patterns will be transferred to the wafer.Based on Gabor's 'reduction to principal waves',a partially coherent imaging system can be represented as a superposition of coherent imaging systems,so an accurate and fast sparse aerial image intensity calculation algorithm for lithography simulation is presented based on convolution kernels,which also include simulating the lateral diffusion and some mask processing effects via Gaussian filter.The simplicity of this model leads to substantial computational and analytical benefits.Efficiency of this method is also shown through simulation results.展开更多
The following equations are basic forms of C-K equation (which is simplified in the following as singu-lar integral equations with convolution, that is C-K equations):where a,b,a_j,b_j are known constants or known fun...The following equations are basic forms of C-K equation (which is simplified in the following as singu-lar integral equations with convolution, that is C-K equations):where a,b,a_j,b_j are known constants or known functions, and find its solution f L_P(R), {0} or {α,β}.There were rather complete investigations on the method of solution for equations of Cauchy type aswell as integral equations of convolution type. But there is not investigation to the C-K equations, nodoubt, such that is important.展开更多
In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is t...In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is transformed to discrete system of equations, and then we obtain the solvable conditions and the explicit solutions in class L2[-π, π].展开更多
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ...Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.展开更多
Image retrieval for food ingredients is important work,tremendously tiring,uninteresting,and expensive.Computer vision systems have extraordinary advancements in image retrieval with CNNs skills.But it is not feasible...Image retrieval for food ingredients is important work,tremendously tiring,uninteresting,and expensive.Computer vision systems have extraordinary advancements in image retrieval with CNNs skills.But it is not feasible for small-size food datasets using convolutional neural networks directly.In this study,a novel image retrieval approach is presented for small and medium-scale food datasets,which both augments images utilizing image transformation techniques to enlarge the size of datasets,and promotes the average accuracy of food recognition with state-of-the-art deep learning technologies.First,typical image transformation techniques are used to augment food images.Then transfer learning technology based on deep learning is applied to extract image features.Finally,a food recognition algorithm is leveraged on extracted deepfeature vectors.The presented image-retrieval architecture is analyzed based on a smallscale food dataset which is composed of forty-one categories of food ingredients and one hundred pictures for each category.Extensive experimental results demonstrate the advantages of image-augmentation architecture for small and medium datasets using deep learning.The novel approach combines image augmentation,ResNet feature vectors,and SMO classification,and shows its superiority for food detection of small/medium-scale datasets with comprehensive experiments.展开更多
Traditional fire smoke detection methods mostly rely on manual algorithm extraction and sensor detection;however,these methods are slow and expensive to achieve discrimination.We proposed an improved convolutional neu...Traditional fire smoke detection methods mostly rely on manual algorithm extraction and sensor detection;however,these methods are slow and expensive to achieve discrimination.We proposed an improved convolutional neural network(CNN)to achieve fast analysis.The improved CNN can be used to liberate manpower.The network does not require complicated manual feature extraction to identify forest fire smoke.First,to alleviate the computational pressure and speed up the discrimination efficiency,kernel principal component analysis was performed on the experimental data set.To improve the robustness of the CNN and to avoid overfitting,optimization strategies were applied in multi-convolution kernels and batch normalization to improve loss functions.The experimental analysis shows that the CNN proposed in this study can learn the feature information automatically for smoke images in the early stages of fire automatically with a high recognition rate.As a result,the improved CNN enriches the theory of smoke discrimination in the early stages of a forest fire.展开更多
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by theKorea government(MSIT)(No.2022R1A5A8026986)and supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2020-0-01304,Development of Self-learnable Mobile Recursive Neural Network Processor Technology)+3 种基金It was also supported by the MSIT(Ministry of Science and ICT),Korea,under the Grand Information Technology Research Center support program(IITP-2022-2020-0-01462)supervised by the“IITP(Institute for Information&communications Technology Planning&Evaluation)”supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1F1A1061314)In addition,this work was conducted during the research year of Chungbuk National University in 2020.
文摘As deep learning techniques such as Convolutional Neural Networks(CNNs)are widely adopted,the complexity of CNNs is rapidly increasing due to the growing demand for CNN accelerator system-on-chip(SoC).Although conventional CNN accelerators can reduce the computational time of learning and inference tasks,they tend to occupy large chip areas due to many multiply-and-accumulate(MAC)operators when implemented in complex digital circuits,incurring excessive power consumption.To overcome these drawbacks,this work implements an analog convolutional filter consisting of an analog multiply-and-accumulate arithmetic circuit along with an analog-to-digital converter(ADC).This paper introduces the architecture of an analog convolutional kernel comprised of low-power ultra-small circuits for neural network accelerator chips.ADC is an essential component of the analog convolutional kernel used to convert the analog convolutional result to digital values to be stored in memory.This work presents the implementation of a highly low-power and area-efficient 12-bit Successive Approximation Register(SAR)ADC.Unlink most other SAR-ADCs with differential structure;the proposed ADC employs a single-ended capacitor array to support the preceding single-ended max-pooling circuit along with minimal power consumption.The SARADCimplementation also introduces a unique circuit that reduces kick-back noise to increase performance.It was implemented in a test chip using a 55 nm CMOS process.It demonstrates that the proposed ADC reduces Kick-back noise by 40%and consequently improves the ADC’s resolution by about 10%while providing a near rail-to-rail dynamic rangewith significantly lower power consumption than conventional ADCs.The ADC test chip shows a chip size of 4600μm^(2)with a power consumption of 6.6μW while providing an signal-to-noise-and-distortion ratio(SNDR)of 68.45 dB,corresponding to an effective number of bits(ENOB)of 11.07 bits.
基金supported,in part,by the National Nature Science Foundation of China under grant numbers 62272236in part,by the Natural Science Foundation of Jiangsu Province under grant numbers BK20201136,BK20191401in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)fund.
文摘Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learning have attracted widespread attention.Most existing methods use 3×3 small kernel convolution to extract image features and embed the watermarking.However,the effective perception fields for small kernel convolution are extremely confined,so the pixels that each watermarking can affect are restricted,thus limiting the performance of the watermarking.To address these problems,we propose a watermarking network based on large kernel convolution and adaptive weight assignment for loss functions.It uses large-kernel depth-wise convolution to extract features for learning large-scale image information and subsequently projects the watermarking into a highdimensional space by 1×1 convolution to achieve adaptability in the channel dimension.Subsequently,the modification of the embedded watermarking on the cover image is extended to more pixels.Because the magnitude and convergence rates of each loss function are different,an adaptive loss weight assignment strategy is proposed to make theweights participate in the network training together and adjust theweight dynamically.Further,a high-frequency wavelet loss is proposed,by which the watermarking is restricted to only the low-frequency wavelet sub-bands,thereby enhancing the robustness of watermarking against image compression.The experimental results show that the peak signal-to-noise ratio(PSNR)of the encoded image reaches 40.12,the structural similarity(SSIM)reaches 0.9721,and the watermarking has good robustness against various types of noise.
文摘Optical proximity correction (OPC) systems require an accurate and fast way to predict how patterns will be transferred to the wafer.Based on Gabor's 'reduction to principal waves',a partially coherent imaging system can be represented as a superposition of coherent imaging systems,so an accurate and fast sparse aerial image intensity calculation algorithm for lithography simulation is presented based on convolution kernels,which also include simulating the lateral diffusion and some mask processing effects via Gaussian filter.The simplicity of this model leads to substantial computational and analytical benefits.Efficiency of this method is also shown through simulation results.
文摘The following equations are basic forms of C-K equation (which is simplified in the following as singu-lar integral equations with convolution, that is C-K equations):where a,b,a_j,b_j are known constants or known functions, and find its solution f L_P(R), {0} or {α,β}.There were rather complete investigations on the method of solution for equations of Cauchy type aswell as integral equations of convolution type. But there is not investigation to the C-K equations, nodoubt, such that is important.
基金Supported by the Qufu Normal University Youth Fund(XJ201218)
文摘In this paper, we propose and discuss a class of singular integral equation of convolution type with csc(τ- θ) kernel in class L2[-π, π]. Using discrete Fourier transform and the lemma, this kind of equations is transformed to discrete system of equations, and then we obtain the solvable conditions and the explicit solutions in class L2[-π, π].
基金The National Natural Science Foundation of China(No.51675098)
文摘Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.
文摘Image retrieval for food ingredients is important work,tremendously tiring,uninteresting,and expensive.Computer vision systems have extraordinary advancements in image retrieval with CNNs skills.But it is not feasible for small-size food datasets using convolutional neural networks directly.In this study,a novel image retrieval approach is presented for small and medium-scale food datasets,which both augments images utilizing image transformation techniques to enlarge the size of datasets,and promotes the average accuracy of food recognition with state-of-the-art deep learning technologies.First,typical image transformation techniques are used to augment food images.Then transfer learning technology based on deep learning is applied to extract image features.Finally,a food recognition algorithm is leveraged on extracted deepfeature vectors.The presented image-retrieval architecture is analyzed based on a smallscale food dataset which is composed of forty-one categories of food ingredients and one hundred pictures for each category.Extensive experimental results demonstrate the advantages of image-augmentation architecture for small and medium datasets using deep learning.The novel approach combines image augmentation,ResNet feature vectors,and SMO classification,and shows its superiority for food detection of small/medium-scale datasets with comprehensive experiments.
基金National Natural Science Foundation of China(31670717)Natural Science Foundation of Heilongjiang Province(LH2020C051)。
文摘Traditional fire smoke detection methods mostly rely on manual algorithm extraction and sensor detection;however,these methods are slow and expensive to achieve discrimination.We proposed an improved convolutional neural network(CNN)to achieve fast analysis.The improved CNN can be used to liberate manpower.The network does not require complicated manual feature extraction to identify forest fire smoke.First,to alleviate the computational pressure and speed up the discrimination efficiency,kernel principal component analysis was performed on the experimental data set.To improve the robustness of the CNN and to avoid overfitting,optimization strategies were applied in multi-convolution kernels and batch normalization to improve loss functions.The experimental analysis shows that the CNN proposed in this study can learn the feature information automatically for smoke images in the early stages of fire automatically with a high recognition rate.As a result,the improved CNN enriches the theory of smoke discrimination in the early stages of a forest fire.