In this article the authors have studied the stability analysis and chaos control of the fractional order Vallis and El-Nino systems. The chaos control of these systems is studied using nonlinear control method with t...In this article the authors have studied the stability analysis and chaos control of the fractional order Vallis and El-Nino systems. The chaos control of these systems is studied using nonlinear control method with the help of a new lemma for Caputo derivative and Lyapunov stability theory.The synchronization between the systems for different fractional order cases and numerical simulation through graphical plots for different particular cases clearly exhibit that the method is easy to implement and reliable for synchronization of fractional order chaotic systems. The comparison of time of synchronization when the systems pair approaches from standard order to fractional order is the key feature of the article.展开更多
q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hype...q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hyperstability concept and small-signal linearization technique.At first,the stability of q-axis rotor flux based MRAS is proven with Popov’s Hyperstability theory.Then,to find out the guidelines for optimally designing the coefficients in the PI controller,acting as the adaption mechanism in the MRAS,small-signal model of the estimation system is developed.The obtained linearization model not only allows the stability to be verified further through Routh criterion,but also reveals the distribution of the characteristic roots,which leads to the clue to optimal PI gains.The theoretical analysis and the resultant design guidelines of the adaptation PI gains are verified through simulation and experiments.展开更多
To tackle emerging power system small-signal stability problems such as wideband oscillations induced by the large-scale integration of renewable energy and power electronics,it is crucial to review and compare existi...To tackle emerging power system small-signal stability problems such as wideband oscillations induced by the large-scale integration of renewable energy and power electronics,it is crucial to review and compare existing small-signal stability analysis methods.On this basis,guidance can be provided on determining suitable analysis methods to solve relevant small-signal stability problems in power electronics-dominated power systems(PEDPSs).Various mature methods have been developed to analyze the small-signal stability of PEDPSs,including eigenvalue-based methods,Routh stability criterion,Nyquist/Bode plot based methods,passivity-based methods,positive-net-damping method,lumped impedance-based methods,bifurcation-based methods,etc.In this paper,the application conditions,advantages,and limitations of these criteria in identifying oscillation frequencies and stability margins are reviewed and compared to reveal and explain connections and discrepancies among them.Especially,efforts are devoted to mathematically proving the equivalence between these small-signal stability criteria.Finally,the performance of these criteria is demonstrated and compared in a 4-machine 2-area power system with a wind farm and an IEEE 39-bus power system with 3 wind farms.展开更多
Small signal stability analysis is conducted for an asymmetrical six-phase synchronous motor in comparison with its equivalent three-phase counterpart.For this purpose,a linearized model of the six-phase synchronous m...Small signal stability analysis is conducted for an asymmetrical six-phase synchronous motor in comparison with its equivalent three-phase counterpart.For this purpose,a linearized model of the six-phase synchronous motor is developed using the dq0 approach,which is used in eigenvalue criteria to determine absolute stability in comparison with its equivalent three-phase counterpart.The analysis includes a comparison of the variation in evaluated eigenvalues associated with the stator and rotor sides according to changes in both the three and six-phase machine parameters and working conditions.Key analytical results are experimentally investigated and validated on a test rig.展开更多
As a growing number of microgrids(MGs)has been integrated into the modern power grids,the interconnection and applicable cooperation among multiple MGs motivate the development of networked MGs.Dynamic MGs,as an advan...As a growing number of microgrids(MGs)has been integrated into the modern power grids,the interconnection and applicable cooperation among multiple MGs motivate the development of networked MGs.Dynamic MGs,as an advanced networked MGs structure,can not only integrate multiple MGs into the distribution system but also fulfill the requested system network reconfiguration with improved flexibility.A general distributed control approach for networked MGs is reviewed.A distributed control framework for dynamic MGs operation is developed,along with an extensible architecture with considerations of large-scale distributed energy resources(DERs)integration.A scalable small-signal stability analysis is conducted per the proposed distributed control strategies and the conditions under which the system is exponentially stable are derived.At last,the effectiveness of the proposed control framework and stability analysis are verified using a 6-bus test feeder.展开更多
DQ impedance-based method has been widely used to study the stability of three-phase converter systems.As the dq impedance model of each converter depends on its local dq reference frame,the dq impedance modeling of c...DQ impedance-based method has been widely used to study the stability of three-phase converter systems.As the dq impedance model of each converter depends on its local dq reference frame,the dq impedance modeling of complex converter networks gets complicated.Because the reference frames of different converters might not fully align,depending on the structure.Thus,in order to find an accurate impedance model of a complex network for stability analysis,converting the impedances of different converters into a common reference frame is required.This paper presents a comprehensive investigation on the transformation of dq impedances to a common reference frame in complex converter networks.Four different methods are introduced and analyzed in a systematic way.Moreover,a rigorous comparison among these approaches is carried out,where the method with the simplest transformation procedure is finally suggested for the modeling of complex converter networks.The performed analysis is verified by injecting two independent small-signal perturbations into the d and the q axis,and doing a point-by-point impedance measurement.展开更多
In this paper,a synchronized control strategy of double fed induction generator that can provide reserve capability and primary frequency support for microgrid is firstly developed.The microgrid based small signal sta...In this paper,a synchronized control strategy of double fed induction generator that can provide reserve capability and primary frequency support for microgrid is firstly developed.The microgrid based small signal stability performance is investigated under multiple operating conditions.The effect of three categories of key controller parameters on dominant eigenvalues is studied by sensitivity analysis,including:1)active power drooping coefficient;2)reactive power drooping coefficient;3)parameters of outer loop excitation current control.Finally,some constructive suggestions on how to tune controller parameters to improve microgrid’s small signal stability performance are discussed.展开更多
为了提升永磁直线同步电机(permanent magnet linear synchronous motor,PMLSM)在负载变化、参数摄动和其他不确定因素下的抗扰性能和速度跟踪性能,提出一种基于级联线性-非线性自抗扰控制器的PMLSM速度控制策略。首先,建立考虑负载扰...为了提升永磁直线同步电机(permanent magnet linear synchronous motor,PMLSM)在负载变化、参数摄动和其他不确定因素下的抗扰性能和速度跟踪性能,提出一种基于级联线性-非线性自抗扰控制器的PMLSM速度控制策略。首先,建立考虑负载扰动和参数失配的PMLSM数学模型;其次,设计级联线性-非线性扩张状态观测器来实时估计和补偿系统所受的不确定扰动,前级线性扩张状态观测器保证系统在大扰动下保持稳定,后级非线性扩张状态观测器利用非线性机制进一步提高系统对扰动的估计精度,从而将线性自抗扰控制和非线性自抗扰控制的优势相结合,以此提升系统的速度跟踪性能和抗扰动能力;并且,对所提控制器提出基于劳斯判据的稳定性分析方法,并对系统的抗扰性能和噪声抑制性能进行了频域分析;最后,对基于PI控制、级联线性自抗扰控制、非线性自抗扰控制和级联线性-非线性自抗扰控制的永磁直线同步电机系统进行仿真和实验对比,验证所提方法的优越性。展开更多
In this paper,the synchronization stability challenges of same-rated frequency interconnected microgrids(IMGs)with fully inverter-based generation units are studied.In this type of weak power grid with low X/R ratios ...In this paper,the synchronization stability challenges of same-rated frequency interconnected microgrids(IMGs)with fully inverter-based generation units are studied.In this type of weak power grid with low X/R ratios and low line impedances,no strong source with a high-inertia rating exists with which other generation units can be synchronized.Two IMGs controlled using a pinning consensus-based control architecture are considered.The inrush power flow at the beginning of the interconnection process is modeled and analyzed.This power flow is affected by the voltage/phase/frequency difference of the IMG points of common coupling.A small-signal model of the IMGs is obtained that includes a synchronization control unit,and small-signal stability is analyzed based on sensitivity analysis of the most important control and operational parameters.In addition,the transient stability of a nonlinear model of the IMGs under study as implemented in Sim Power Systems/MATLAB is investigated.Stable synchronization is more challenging than the synchronization of multi-area strong power grids and grid-connected MGs.However,synchronization can still be performed by selecting more limited ranges for the control gains and threshold values of the synchronization algorithm.Nevertheless,different disturbances such as high load conditions can cause synchronization instability.展开更多
基金the financial support from the UGC,New Delhi,India under the SRF scheme
文摘In this article the authors have studied the stability analysis and chaos control of the fractional order Vallis and El-Nino systems. The chaos control of these systems is studied using nonlinear control method with the help of a new lemma for Caputo derivative and Lyapunov stability theory.The synchronization between the systems for different fractional order cases and numerical simulation through graphical plots for different particular cases clearly exhibit that the method is easy to implement and reliable for synchronization of fractional order chaotic systems. The comparison of time of synchronization when the systems pair approaches from standard order to fractional order is the key feature of the article.
文摘q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hyperstability concept and small-signal linearization technique.At first,the stability of q-axis rotor flux based MRAS is proven with Popov’s Hyperstability theory.Then,to find out the guidelines for optimally designing the coefficients in the PI controller,acting as the adaption mechanism in the MRAS,small-signal model of the estimation system is developed.The obtained linearization model not only allows the stability to be verified further through Routh criterion,but also reveals the distribution of the characteristic roots,which leads to the clue to optimal PI gains.The theoretical analysis and the resultant design guidelines of the adaptation PI gains are verified through simulation and experiments.
基金supported in part by the National Natural Science Foundation of China for the Research Project(No.52077188)in part by the Hong Kong Research Grant Council for the Research Project(No.15219619).
文摘To tackle emerging power system small-signal stability problems such as wideband oscillations induced by the large-scale integration of renewable energy and power electronics,it is crucial to review and compare existing small-signal stability analysis methods.On this basis,guidance can be provided on determining suitable analysis methods to solve relevant small-signal stability problems in power electronics-dominated power systems(PEDPSs).Various mature methods have been developed to analyze the small-signal stability of PEDPSs,including eigenvalue-based methods,Routh stability criterion,Nyquist/Bode plot based methods,passivity-based methods,positive-net-damping method,lumped impedance-based methods,bifurcation-based methods,etc.In this paper,the application conditions,advantages,and limitations of these criteria in identifying oscillation frequencies and stability margins are reviewed and compared to reveal and explain connections and discrepancies among them.Especially,efforts are devoted to mathematically proving the equivalence between these small-signal stability criteria.Finally,the performance of these criteria is demonstrated and compared in a 4-machine 2-area power system with a wind farm and an IEEE 39-bus power system with 3 wind farms.
文摘Small signal stability analysis is conducted for an asymmetrical six-phase synchronous motor in comparison with its equivalent three-phase counterpart.For this purpose,a linearized model of the six-phase synchronous motor is developed using the dq0 approach,which is used in eigenvalue criteria to determine absolute stability in comparison with its equivalent three-phase counterpart.The analysis includes a comparison of the variation in evaluated eigenvalues associated with the stator and rotor sides according to changes in both the three and six-phase machine parameters and working conditions.Key analytical results are experimentally investigated and validated on a test rig.
文摘As a growing number of microgrids(MGs)has been integrated into the modern power grids,the interconnection and applicable cooperation among multiple MGs motivate the development of networked MGs.Dynamic MGs,as an advanced networked MGs structure,can not only integrate multiple MGs into the distribution system but also fulfill the requested system network reconfiguration with improved flexibility.A general distributed control approach for networked MGs is reviewed.A distributed control framework for dynamic MGs operation is developed,along with an extensible architecture with considerations of large-scale distributed energy resources(DERs)integration.A scalable small-signal stability analysis is conducted per the proposed distributed control strategies and the conditions under which the system is exponentially stable are derived.At last,the effectiveness of the proposed control framework and stability analysis are verified using a 6-bus test feeder.
基金The support of the first and fourth authors is given by National Key R&D Program of China,2018YFB0905200.The support for the second and third authors is coming from BIRD171227/17 project of the University of Padova.
文摘DQ impedance-based method has been widely used to study the stability of three-phase converter systems.As the dq impedance model of each converter depends on its local dq reference frame,the dq impedance modeling of complex converter networks gets complicated.Because the reference frames of different converters might not fully align,depending on the structure.Thus,in order to find an accurate impedance model of a complex network for stability analysis,converting the impedances of different converters into a common reference frame is required.This paper presents a comprehensive investigation on the transformation of dq impedances to a common reference frame in complex converter networks.Four different methods are introduced and analyzed in a systematic way.Moreover,a rigorous comparison among these approaches is carried out,where the method with the simplest transformation procedure is finally suggested for the modeling of complex converter networks.The performed analysis is verified by injecting two independent small-signal perturbations into the d and the q axis,and doing a point-by-point impedance measurement.
基金This work is jointly supported by National High Technology R&D Program of China(No.2011AA050204)the 2014 Endeavour Research Fellowship and 2014 Research Collaborative Award of University of Western Australia,the project of the State Grid(Off-shore wind farm plan in Zhejiang province).
文摘In this paper,a synchronized control strategy of double fed induction generator that can provide reserve capability and primary frequency support for microgrid is firstly developed.The microgrid based small signal stability performance is investigated under multiple operating conditions.The effect of three categories of key controller parameters on dominant eigenvalues is studied by sensitivity analysis,including:1)active power drooping coefficient;2)reactive power drooping coefficient;3)parameters of outer loop excitation current control.Finally,some constructive suggestions on how to tune controller parameters to improve microgrid’s small signal stability performance are discussed.
文摘为了提升永磁直线同步电机(permanent magnet linear synchronous motor,PMLSM)在负载变化、参数摄动和其他不确定因素下的抗扰性能和速度跟踪性能,提出一种基于级联线性-非线性自抗扰控制器的PMLSM速度控制策略。首先,建立考虑负载扰动和参数失配的PMLSM数学模型;其次,设计级联线性-非线性扩张状态观测器来实时估计和补偿系统所受的不确定扰动,前级线性扩张状态观测器保证系统在大扰动下保持稳定,后级非线性扩张状态观测器利用非线性机制进一步提高系统对扰动的估计精度,从而将线性自抗扰控制和非线性自抗扰控制的优势相结合,以此提升系统的速度跟踪性能和抗扰动能力;并且,对所提控制器提出基于劳斯判据的稳定性分析方法,并对系统的抗扰性能和噪声抑制性能进行了频域分析;最后,对基于PI控制、级联线性自抗扰控制、非线性自抗扰控制和级联线性-非线性自抗扰控制的永磁直线同步电机系统进行仿真和实验对比,验证所提方法的优越性。
文摘In this paper,the synchronization stability challenges of same-rated frequency interconnected microgrids(IMGs)with fully inverter-based generation units are studied.In this type of weak power grid with low X/R ratios and low line impedances,no strong source with a high-inertia rating exists with which other generation units can be synchronized.Two IMGs controlled using a pinning consensus-based control architecture are considered.The inrush power flow at the beginning of the interconnection process is modeled and analyzed.This power flow is affected by the voltage/phase/frequency difference of the IMG points of common coupling.A small-signal model of the IMGs is obtained that includes a synchronization control unit,and small-signal stability is analyzed based on sensitivity analysis of the most important control and operational parameters.In addition,the transient stability of a nonlinear model of the IMGs under study as implemented in Sim Power Systems/MATLAB is investigated.Stable synchronization is more challenging than the synchronization of multi-area strong power grids and grid-connected MGs.However,synchronization can still be performed by selecting more limited ranges for the control gains and threshold values of the synchronization algorithm.Nevertheless,different disturbances such as high load conditions can cause synchronization instability.