Determination of crop growth parameters of maize helps assess the performance of the crop for food security. A study was conducted in two seasons covering 2012 and 2013 to establish optimal irrigation and nitrogen fer...Determination of crop growth parameters of maize helps assess the performance of the crop for food security. A study was conducted in two seasons covering 2012 and 2013 to establish optimal irrigation and nitrogen fertilizer rates for drought tolerant hybrid maize (Zea mays L.), DK8031 variety, in sandy loam soils using furrow irrigation. Four additive irrigation levels (119.05 mm, 238.10 mm, 357.15 mm and 476.2 mm) were allocated the main plots while five nitrogen fertilizer rates (0 kg/ha, 60, 75 kg/ha, 90 kg/ha and 100 kg/ha) were allocated the sub-plots. Both irrigation and nitrogen fertilizer treatments significantly enhanced crop growth parameters under consideration. Stand count per treatment plot, plant height and number of leaves per ranged from 45-59 plants/plot, 215-238 cm and 14-16 leaves respectively. It was concluded that use of supplementary irrigation and phased nitrogen fertilizer rates for maize growing in areas such as Embu can greatly promote crop growth.展开更多
Effects of residues of 9 plants, lemon eucalyptus (Eucalyptus citriodoraHook., P_1), robust eucalyptus (E. robusta Smith, P_2), Nepal camphortree (Cinnamomum glanduliferum(Wall.) Nees, P_3), tea (Camellia sinensis (Li...Effects of residues of 9 plants, lemon eucalyptus (Eucalyptus citriodoraHook., P_1), robust eucalyptus (E. robusta Smith, P_2), Nepal camphortree (Cinnamomum glanduliferum(Wall.) Nees, P_3), tea (Camellia sinensis (Linn.) O. Ktze. f., P_4), oleander (Nerium indicum Mill,P_5), rape (Brassica campestris L., P_g), Chinese tallow tree (Sapium sebiferum L., P_7), tung(Vernicia fordii (Hemsl.), P_8), and croton (Croton tiglium L., P_9), 7 chemicals, boric acid (C_1),borax (C_2), oxalic acid (C_3), sodium oxalite (C_4), sodium dihydrogen phosphate (C_6), sodiumsilicate (C_7) and sodium citrate (C_8), and a natural organic substance, humic acid (C_5), onurease activity of a neutral purple soil and recovery of urea nitrogen by maize were studied throughincubation and pot experiments. Hydroquinone (HQ) was applied as the reference inhibitor. Afterincubation at 37℃ for 24 h, 7 inhibitors with higher ability to inhibit urease activity wereselected and then incubated for 14 days at 25℃. Results of the incubation experiments showed thatsoil urease activity was greatly inhibited by them, and the inhibition effect followed an order ofP_2>P_4>C_3>C_2>P_3>C_1>HQ>P_1. The 7 selected materials reduced the accumulative amounts of Nreleased from urea and the maximum urease activity by 11.7%~28.4% and 26.7%~39.7%, respectively,and postponed the N release peak by 2~4 days in the incubation period of 14 days under constanttemperature, as compared to the control (no inhibitor). In the pot experiment with the 7 materialsat two levels of addition, low (L) and high (H), the C_1 (H), C_3 (H), C_1 (L), P_4 (L) and C_2 (L)treatments could significantly increase the dry weights of the aboveground parts and the totalbiomass of the maize plants and the apparent recovery rate of urea-N was increased by 6.3%~32.4% ascompared to the control (no hibitor).展开更多
To address the relationships between the amount of nitrogen fertilizer application and the yield of double cropping rice systems,we investigated the effects of a cultivation pattern of strong seedlings with increased ...To address the relationships between the amount of nitrogen fertilizer application and the yield of double cropping rice systems,we investigated the effects of a cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application(SDN)on the morphological and physiological characteristics of double cropping rice.Our results indicated that the effects of SDN on the morphological characteristics of the single plant roots of double cropping rice were not significant,but the morphological characteristics of the population roots were largely different.Specifically,SDN significantly increased the morphological indexes of the root population such as root fresh weight,root volume,root number,root length and root dry weight.The effects of SDN on the total root absorption areas and root active absorption areas of the single plants were non-significant,but it dramatically enhanced the total root absorption areas and root active absorption areas of the plant population during the tillering,heading and mature stages.In addition,SDN significantly increased the root bleeding intensity and elevated the soluble sugar and free amino acid contents of root bleeding sap.Compared to the traditional cultivation pattern(CK),SDN significantly increased root bleeding intensity at the heading stage by 4.37 and 8.90% for early and late rice,respectively.Meanwhile,SDN profoundly enhanced the soluble sugar contents of root bleeding sap by 12.85 and 10.41% for early and late rice,respectively.In addition,SDN also significantly enhanced free amino acid content of root bleeding sap by 43.25% for early rice and by 37.50% for late rice systems compared to CK.Furthermore,SDN increased the actual yield of double cropping rice mainly due to the higher effective panicle number and the larger seedsetting rate.The actual yields of early rice under SDN were higher than CK by 9.37 and 5.98% in 2016 and 2017,and the actual yields of late rice under SDN were higher than CK by 0.20 and 1.41% in 2016 and 2017,respectively.Correlation analysis indicated that the significant positive correlations were observed between the majority of the root indexes and the actual yield across the four different growth stages.展开更多
With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield a...With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen.展开更多
Field experiments were conducted in the Ebro Delta area (Spain), from 2007 to 2009 with two rice varieties: Gleva and Tebre. The experimental treatments included a series of seed rates, two different water manageme...Field experiments were conducted in the Ebro Delta area (Spain), from 2007 to 2009 with two rice varieties: Gleva and Tebre. The experimental treatments included a series of seed rates, two different water management systems and two different nitrogen fertilization times. The number of leaves on the main stems and their emergence time were periodically tagged. The results indicated that the final leaf number on the main stems in the two rice varieties was quite stable over a three-year period despite of the differences in their respective growth cycles. Interaction between nitrogen fertilization and water management influenced the final leaf number on the main stems. Plant density also had a significant influence on the rate of leaf appearance by extending the phyllochron and postponing the onset of intraspecific competition after the emergence of the 7th leaf on the main stems. Final leaf number on the main stems was negatively related to plant density. A relationship between leaf appearance and thermal time was established with a strong nonlinear function. In direct-seeded rice, the length of the phyllochron increases exponentially in line with the advance of plant development. A general model, derived from 2-year experimental data, was developed and satisfactorily validated; it had a root mean square error of 0.3 leaf. An exponential model can be used to predict leaf emergence in direct-seeded rice.展开更多
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture,...Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.展开更多
Metasequoia glyptostroboides(M.glyptostroboides)is a unique plant species related to relic flora in China.It plays a positive role in afforestation and its long-term protection with high paleoclimate research value.Ho...Metasequoia glyptostroboides(M.glyptostroboides)is a unique plant species related to relic flora in China.It plays a positive role in afforestation and its long-term protection with high paleoclimate research value.However,due to the nutrients-supply deficiency,it is a big challenge to cultivate the high-quality seedlings of M.glyptostroboides.In this study,a pot experiment in a greenhouse environment was carried out to identify the effect of N-exponential fertilization on the growth and nutrient distribution of M.glyptostroboides seedling.The M.glyptostroboides rooted seedlings with 12-month growth were chosen.Different N fertilizer levels with conventional fertilization(CF:5.0 g seedling^(−1)),exponential fertilization including EF1,EF2,EF3 and EF4 were determined.The relevant growth indexes were measured after 210-day growth.The results indicated that non-significant differences in seedlings’height and ground diameter were found among the above treatments(P>0.05);At the same time,N-exponential fertilization promoted the M.glyptostroboides’s biomass in different organs(P<0.05),with the maximum total biomass under EF3 treatment.The N accumulation in root and stem of the N-exponential fertilization treatments were increased in to some extent(P<0.05).The maximum N accumulation was also found under EF3 treatment.Therefore,steady-state nutrition and superior growth performance of M.glyptostroboides could be obtained by N-exponential fertilization of 5.0 g cutting^(−1).展开更多
文摘Determination of crop growth parameters of maize helps assess the performance of the crop for food security. A study was conducted in two seasons covering 2012 and 2013 to establish optimal irrigation and nitrogen fertilizer rates for drought tolerant hybrid maize (Zea mays L.), DK8031 variety, in sandy loam soils using furrow irrigation. Four additive irrigation levels (119.05 mm, 238.10 mm, 357.15 mm and 476.2 mm) were allocated the main plots while five nitrogen fertilizer rates (0 kg/ha, 60, 75 kg/ha, 90 kg/ha and 100 kg/ha) were allocated the sub-plots. Both irrigation and nitrogen fertilizer treatments significantly enhanced crop growth parameters under consideration. Stand count per treatment plot, plant height and number of leaves per ranged from 45-59 plants/plot, 215-238 cm and 14-16 leaves respectively. It was concluded that use of supplementary irrigation and phased nitrogen fertilizer rates for maize growing in areas such as Embu can greatly promote crop growth.
基金the Laboratory of Material Cycling in Pedosphere,the Chinese Academy of Sciences the Chongqing Science and Technology Commission,China.
文摘Effects of residues of 9 plants, lemon eucalyptus (Eucalyptus citriodoraHook., P_1), robust eucalyptus (E. robusta Smith, P_2), Nepal camphortree (Cinnamomum glanduliferum(Wall.) Nees, P_3), tea (Camellia sinensis (Linn.) O. Ktze. f., P_4), oleander (Nerium indicum Mill,P_5), rape (Brassica campestris L., P_g), Chinese tallow tree (Sapium sebiferum L., P_7), tung(Vernicia fordii (Hemsl.), P_8), and croton (Croton tiglium L., P_9), 7 chemicals, boric acid (C_1),borax (C_2), oxalic acid (C_3), sodium oxalite (C_4), sodium dihydrogen phosphate (C_6), sodiumsilicate (C_7) and sodium citrate (C_8), and a natural organic substance, humic acid (C_5), onurease activity of a neutral purple soil and recovery of urea nitrogen by maize were studied throughincubation and pot experiments. Hydroquinone (HQ) was applied as the reference inhibitor. Afterincubation at 37℃ for 24 h, 7 inhibitors with higher ability to inhibit urease activity wereselected and then incubated for 14 days at 25℃. Results of the incubation experiments showed thatsoil urease activity was greatly inhibited by them, and the inhibition effect followed an order ofP_2>P_4>C_3>C_2>P_3>C_1>HQ>P_1. The 7 selected materials reduced the accumulative amounts of Nreleased from urea and the maximum urease activity by 11.7%~28.4% and 26.7%~39.7%, respectively,and postponed the N release peak by 2~4 days in the incubation period of 14 days under constanttemperature, as compared to the control (no inhibitor). In the pot experiment with the 7 materialsat two levels of addition, low (L) and high (H), the C_1 (H), C_3 (H), C_1 (L), P_4 (L) and C_2 (L)treatments could significantly increase the dry weights of the aboveground parts and the totalbiomass of the maize plants and the apparent recovery rate of urea-N was increased by 6.3%~32.4% ascompared to the control (no hibitor).
基金financially supported by the National Key Research and Development Program of China(2017YFD0300106,2018YFD0301103,and 2016YFD0300108)the National Key Technologies R&D Program of China during the 12th Five-Year Plan period(2013BAD07B12)the National Natural Science Foundation of China(31601263)。
文摘To address the relationships between the amount of nitrogen fertilizer application and the yield of double cropping rice systems,we investigated the effects of a cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application(SDN)on the morphological and physiological characteristics of double cropping rice.Our results indicated that the effects of SDN on the morphological characteristics of the single plant roots of double cropping rice were not significant,but the morphological characteristics of the population roots were largely different.Specifically,SDN significantly increased the morphological indexes of the root population such as root fresh weight,root volume,root number,root length and root dry weight.The effects of SDN on the total root absorption areas and root active absorption areas of the single plants were non-significant,but it dramatically enhanced the total root absorption areas and root active absorption areas of the plant population during the tillering,heading and mature stages.In addition,SDN significantly increased the root bleeding intensity and elevated the soluble sugar and free amino acid contents of root bleeding sap.Compared to the traditional cultivation pattern(CK),SDN significantly increased root bleeding intensity at the heading stage by 4.37 and 8.90% for early and late rice,respectively.Meanwhile,SDN profoundly enhanced the soluble sugar contents of root bleeding sap by 12.85 and 10.41% for early and late rice,respectively.In addition,SDN also significantly enhanced free amino acid content of root bleeding sap by 43.25% for early rice and by 37.50% for late rice systems compared to CK.Furthermore,SDN increased the actual yield of double cropping rice mainly due to the higher effective panicle number and the larger seedsetting rate.The actual yields of early rice under SDN were higher than CK by 9.37 and 5.98% in 2016 and 2017,and the actual yields of late rice under SDN were higher than CK by 0.20 and 1.41% in 2016 and 2017,respectively.Correlation analysis indicated that the significant positive correlations were observed between the majority of the root indexes and the actual yield across the four different growth stages.
文摘With the change of cropping system in the middle reaches of the Yangtze River,the planting area of autumn maize is gradually increasing.However,the cultivation techniques are still under improvement for higher yield and nitrogen efficiency of autumn maize.Increase in planting density with reduced nitrogen fertilizer application is one of the important paths to achieve high yield and high nitrogen utilization efficiency.Meanwhile,the effect needs to be verified for autumn maize.The semi-compact autumn maize variety Qinyu 58 was planted under different planting densities and nitrogen fertilizer amounts with the split plot design.Different nitrogen application rates were arranged in the main plots,including the conventional nitrogen application(N300,300 kg/hm^2),30%reduction from the conventional treatment(N210,210 kg/hm^2)and no nitrogen application(N0).Different planting densities were arranged in the sub-split plots,including the conventional planting density(D60,60000 plants/hm2),medium density(D78,78000 plants/hm^2)and high density(D93,93000 plants/hm2).The effects of nitrogen fertilizer,planting density and their interaction effects on canopy structure,dry matter accumulation,yield and nitrogen use efficiency of autumn maize were studied.The nitrogen application rate and planting density had obvious interaction effects on the yield formation of autumn maize.Compared with the conventional cultivation(N300D60),increasing the planting density with 30%reduction in nitrogen application(N210)can obviously increase the canopy light interception rate,LAI,dry matter accumulation and yield.However,there was no significant change in canopy light interception rate,LAI,dry matter accumulation,grain weight and yield between D93 and D78.Compared with N300D60,nitrogen translocation efficiency and nitrogen contribution proportion to grain nitrogen did not change significantly in autumn maize grown under N210 and D78 treatments,whereas nitrogen partial productivity,nitrogen agronomic efficiency and recovery and utilization efficiency of nitrogen fertilizer increased significantly.Moreover,high density(D93)planting at N210 plots significantly improved nitrogen transport efficiency and utilization efficiency in autumn maize.Therefore,the suitable planting density of the autumn maize variety Qinyu 58 in Hubei Province is recommended a value of 78000 plants/hm^2,with the nitrogen application rate of 210 kg/hm2,which can achieve the target of higher yield by increasing density and reducing nitrogen.
基金supported by the IRTA (Institute for Food and Agricultural Research and Technology), Spain
文摘Field experiments were conducted in the Ebro Delta area (Spain), from 2007 to 2009 with two rice varieties: Gleva and Tebre. The experimental treatments included a series of seed rates, two different water management systems and two different nitrogen fertilization times. The number of leaves on the main stems and their emergence time were periodically tagged. The results indicated that the final leaf number on the main stems in the two rice varieties was quite stable over a three-year period despite of the differences in their respective growth cycles. Interaction between nitrogen fertilization and water management influenced the final leaf number on the main stems. Plant density also had a significant influence on the rate of leaf appearance by extending the phyllochron and postponing the onset of intraspecific competition after the emergence of the 7th leaf on the main stems. Final leaf number on the main stems was negatively related to plant density. A relationship between leaf appearance and thermal time was established with a strong nonlinear function. In direct-seeded rice, the length of the phyllochron increases exponentially in line with the advance of plant development. A general model, derived from 2-year experimental data, was developed and satisfactorily validated; it had a root mean square error of 0.3 leaf. An exponential model can be used to predict leaf emergence in direct-seeded rice.
文摘Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.
基金the Natural Science Fundation of Zhejiang Province(LY20C160004).
文摘Metasequoia glyptostroboides(M.glyptostroboides)is a unique plant species related to relic flora in China.It plays a positive role in afforestation and its long-term protection with high paleoclimate research value.However,due to the nutrients-supply deficiency,it is a big challenge to cultivate the high-quality seedlings of M.glyptostroboides.In this study,a pot experiment in a greenhouse environment was carried out to identify the effect of N-exponential fertilization on the growth and nutrient distribution of M.glyptostroboides seedling.The M.glyptostroboides rooted seedlings with 12-month growth were chosen.Different N fertilizer levels with conventional fertilization(CF:5.0 g seedling^(−1)),exponential fertilization including EF1,EF2,EF3 and EF4 were determined.The relevant growth indexes were measured after 210-day growth.The results indicated that non-significant differences in seedlings’height and ground diameter were found among the above treatments(P>0.05);At the same time,N-exponential fertilization promoted the M.glyptostroboides’s biomass in different organs(P<0.05),with the maximum total biomass under EF3 treatment.The N accumulation in root and stem of the N-exponential fertilization treatments were increased in to some extent(P<0.05).The maximum N accumulation was also found under EF3 treatment.Therefore,steady-state nutrition and superior growth performance of M.glyptostroboides could be obtained by N-exponential fertilization of 5.0 g cutting^(−1).