期刊文献+
共找到86,612篇文章
< 1 2 250 >
每页显示 20 50 100
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:2
1
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture Deep and ultra-deep reservoir Fracture conductivity Fracturing fluid Hydraulic fracturing reservoir damage
下载PDF
Development and technology status of energy storage in depleted gas reservoirs 被引量:1
2
作者 Jifang Wan Yangqing Sun +4 位作者 Yuxian He Wendong Ji Jingcui Li Liangliang Jiang Maria Jose Jurado 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期198-221,共24页
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a... Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs. 展开更多
关键词 Depleted gas reservoirs Technology and development Siting analysis Safety evaluation Compressed air energy storage
下载PDF
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs 被引量:1
3
作者 Hai-Rong Wu Rong Tan +6 位作者 Shi-Ping Hong Qiong Zhou Bang-Yu Liu Jia-Wei Chang Tian-Fang Luan Ning Kang Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期936-950,共15页
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant... Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs. 展开更多
关键词 Anionic/zwitterionic mixed surfactant system EMULSIFICATION Synergistic effect Low permeability reservoir Enhanced oil recovery
下载PDF
Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China
4
作者 WANG Zecheng JIANG Qingchun +10 位作者 WANG Jufeng LONG Guohui CHENG Honggang SHI Yizuo SUN Qisen JIANG Hua ABULIMITI Yiming CAO Zhenglin XU Yang LU Jiamin HUANG Linjun 《Petroleum Exploration and Development》 SCIE 2024年第1期31-43,共13页
Based on the global basement reservoir database and the dissection of basement reservoirs in China,the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed,and the favorable conditions for h... Based on the global basement reservoir database and the dissection of basement reservoirs in China,the characteristics of hydrocarbon accumulation in basement reservoirs are analyzed,and the favorable conditions for hydrocarbon accumulation in deep basement reservoirs are investigated to highlight the exploration targets.The discovered basement reservoirs worldwide are mainly buried in the Archean and Precambrian granitic and metamorphic formations with depths less than 4500 m,and the relatively large reservoirs have been found in rift,back-arc and foreland basins in tectonic active zones of the Meso-Cenozoic plates.The hydrocarbon accumulation in basement reservoirs exhibits the characteristics in three aspects.First,the porous-fractured reservoirs with low porosity and ultra-low permeability are dominant,where extensive hydrocarbon accumulation occurred during the weathering denudation and later tectonic reworking of the basin basement.High resistance to compaction allows the physical properties of these highly heterogeneous reservoirs to be independent of the buried depth.Second,the hydrocarbons were sourced from the formations outside the basement.The source-reservoir assemblages are divided into contacted source rock-basement and separated source rock-basement patterns.Third,the abnormal high pressure in the source rock and the normal–low pressure in the basement reservoirs cause a large pressure difference between the source rock and the reservoirs,which is conducive to the pumping effect of hydrocarbons in the deep basement.The deep basement prospects are mainly evaluated by the factors such as tectonic activity of basement,source-reservoir combination,development of large deep faults(especially strike-slip faults),and regional seals.The Precambrian crystalline basements at the margin of the intracontinental rifts in cratonic basins,as well as the Paleozoic folded basements and the Meso-Cenozoic fault-block basements adjacent to the hydrocarbon generation depressions,have favorable conditions for hydrocarbon accumulation,and thus they are considered as the main targets for future exploration of deep basement reservoirs. 展开更多
关键词 basement reservoir granite reservoir source-reservoir assemblage pumping effect strike-slip fault deep basement reservoir
下载PDF
Micromechanism and mathematical model of stress sensitivity in tight reservoirs of binary granular medium
5
作者 Jian-Bang Wu Sheng-Lai Yang +4 位作者 Qiang Li Kun Yang Can Huang Dao-Ping Lv Wei Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1780-1795,共16页
Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavi... Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavior and mathematical characterization of binary granular media remains a challenging task.In this study,we conducted online-NMR experiments to investigate the permeability and porosity evolution as well as stress-sensitive control mechanisms in tight sandy conglomerate samples.The results revealed stress sensitivity coefficients between 0.042 and 0.098 and permeability damage rates ranging from 65.6%to 90.9%,with an average pore compression coefficient of 0.0168—0.0208 MPa 1.Pore-scale compression occurred in three stages:filling,compression,and compaction,with matrix pores playing a dominant role in pore compression.The stress sensitivity of binary granular media was found to be influenced by the support structure and particle properties.High stress sensitivity was associated with small fine particle size,high fines content,high uniformity coefficient of particle size,high plastic deformation,and low Young's modulus.Matrix-supported samples exhibited a high irreversible permeability damage rate(average=74.2%)and stress sensitivity coefficients(average=0.089),with pore spaces more slit-like.In contrast,grain-supported samples showed low stress sensitivity coefficients(average=0.021)at high stress stages.Based on the experiments,we developed a mathematical model for stress sensitivity in binary granular media,considering binary granular properties and nested interactions using Hertz contact deformation and Poiseuille theory.By describing the change in activity content of fines under stress,we characterized the non-stationary state of compressive deformation in the binary granular structure and classified the reservoir into three categories.The model was applied for production prediction using actual data from the Mahu reservoir in China,showing that the energy retention rates of support-dominated,fill-dominated,and matrix-controlled reservoirs should be higher than 70.1%,88%,and 90.2%,respectively. 展开更多
关键词 Stress sensitivity Binary granular medium Tight reservoir Online-NMR reservoir energy retention rate
下载PDF
Formation of large-and medium-sized Cretaceous volcanic reservoirs in the offshore Bohai Bay Basin,East China
6
作者 XU Changgui ZHANG Gongcheng +3 位作者 HUANG Shengbing SHAN Xuanlong LIU Tingyu LI Jiahui 《Petroleum Exploration and Development》 SCIE 2024年第3期535-547,共13页
Based on the geological and geophysical data of Mesozoic oil-gas exploration in the sea area of Bohai Bay Basin and the discovered high-yield volcanic oil and gas wells since 2019,this paper methodically summarizes th... Based on the geological and geophysical data of Mesozoic oil-gas exploration in the sea area of Bohai Bay Basin and the discovered high-yield volcanic oil and gas wells since 2019,this paper methodically summarizes the formation conditions of large-and medium-sized Cretaceous volcanic oil and gas reservoirs in the Bohai Sea.Research shows that the Mesozoic large intermediate-felsic lava and intermediate-felsic composite volcanic edifices in the Bohai Sea are the material basis for the formation of large-scale volcanic reservoirs.The upper subfacies of effusive facies and cryptoexplosive breccia subfacies of volcanic conduit facies of volcanic vent-proximal facies belts are favorable for large-scale volcanic reservoir formation.Two types of efficient reservoirs,characterized by high porosity and medium to low permeability,as well as medium porosity and medium to low permeability,are the core of the formation of large-and medium-sized volcanic reservoirs.The reservoir with high porosity and medium to low permeability is formed by intermediate-felsic vesicular lava or the cryptoexplosive breccia superimposed by intensive dissolution.The reservoir with medium porosity and medium to low permeability is formed by intense tectonism superimposed by fluid dissolution.Weathering and tectonic transformation are main formation mechanisms for large and medium-sized volcanic reservoirs in the study area.The low-source“source-reservoir draping type”is the optimum source-reservoir configuration relationship for large-and medium-sized volcanic reservoirs.There exists favorable volcanic facies,efficient reservoirs and source-reservoir draping configuration relationship on the periphery of Bozhong Sag,and the large intermediate-felsic lava and intermediate-felsic composite volcanic edifices close to strike-slip faults and their branch faults are the main directions of future exploration. 展开更多
关键词 Bohai Sea CRETACEOUS large-and medium-sized volcanic reservoirs effective reservoir source-reservoir configuration exploration direction
下载PDF
A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks
7
作者 Huiyan Zhao Xuezhong Chen +3 位作者 Zhijian Hu Man Chen Bo Xiong Jianying Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1313-1330,共18页
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory... Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production. 展开更多
关键词 Marine-continental transitional reservoir multi-layered reservoir seepage mechanisms apparent permeability hydraulic horizontal well productivity model
下载PDF
Experimental Investigation on Condensate Revaporization During Gas Injection Development in Fractured Gas Condensate Reservoirs
8
作者 Lei Zhang Yingxu He +3 位作者 Jintao Wu Haojun Wu Lei Huang Linna Sun 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期575-582,共8页
The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si... The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs. 展开更多
关键词 Buried-hill fractured reservoir Gas condensate reservoir Retrograde condensation CO_(2)injection Retrograde vaporization
下载PDF
Fine quantitative characterization of high-H2S gas reservoirs under the influence of liquid sulfur deposition and adsorption
9
作者 LI Tong MA Yongsheng +3 位作者 ZENG Daqian LI Qian ZHAO Guang SUN Ning 《Petroleum Exploration and Development》 SCIE 2024年第2期416-429,共14页
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p... In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir. 展开更多
关键词 high-H2S gas reservoir liquid sulfur adsorption and deposition pore structure physical property reservoir characterization
下载PDF
Experimental study of the influencing factors and mechanisms of the pressure-reduction and augmented injection effect by nanoparticles in ultra-low permeability reservoirs
10
作者 Pan Wang Yu-Hang Hu +8 位作者 Liao-Yuan Zhang Yong Meng Zhen-Fu Ma Tian-Ru Wang Zi-Lin Zhang Ji-Chao Fang Xiao-Qiang Liu Qing You Yan Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1915-1927,共13页
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically... Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs. 展开更多
关键词 NANOPARTICLE Pressure reduction Augmented injection Ultra-low permeability reservoir
下载PDF
Influence of multi-stage volcanic events on the Late Cretaceous-Paleogene reservoirs and its geological significance in the northern Central Myanmar Basin
11
作者 Zengyuan ZHOU Weilin ZHU +3 位作者 Wenxu PENG Hefeng SUN Shijie ZHAO Xiaowei FU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1074-1086,共13页
The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to E... The northward subduction of the Neo-Tethys oceanic crust triggered multiple magmatic activities in the West Myanmar Arc,which in turn influenced the deposition of sedimentary pyroclastic rocks from the Cretaceous to Eocene strata in the Central Myanmar Basin(CMB).The pore structure of these lithologic reservoirs is complex and rich in tuffaceous sandstone,which plays an adverse role in reservoir development in this region.To understand the development characteristics and genetic mechanism of the pyroclastic rocks within three sets of reservoirs in this area,a comprehensive analysis was conducted through borehole core observations,thin section identification,scanning electron microscope analysis,and mercury injection tests.The tuffaceous sandstone from the upper Cretaceous to the Eocene is dominated by intermediate-acid volcanic rock debris.The pyroclastic rocks exhibit evident chloritization and ironization,with residual intergranular pores being the principal type accompanied by a smaller amount of intergranular dissolved pores and intragranular dissolved pores.The highest porosity is observed in the Eocene tuffaceous sandstone,ranging from 8%to 12%.The Late Cretaceous to Paleocene sandstones exhibit lower porosity levels of only 4%-6%.These reservoirs are characterized by their low porosity and low-permeability.Despite the presence of a good source rock in this area,the volcanic debris particles filling the pores,as well as their subsequent devitrification,chloritization,and limonite mineralization,result in pore throat blockage and narrowing.The reservoirs in this area are small in size,exhibit poor reservoir connectivity and lateral continuity,and fail to meet the necessary conditions for commercial-scale hydrocarbon accumulation and migration. 展开更多
关键词 Central Myanmar Basin back-arc basin reservoir characteristic volcanic debris
下载PDF
Petrophysical Evaluation of Cape Three Points Reservoirs
12
作者 Striggner Bedu-Addo Sylvester Kojo Danuor Larry Pax Chegbeleh 《International Journal of Geosciences》 CAS 2024年第2期162-179,共18页
The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and T... The findings of a study to ascertain and assess the petrophysical characteristics of Cape Three Points reservoirs in the Western basin with a view to describe the reservoir quantitatively using Well Logs, Petrel and Techlog. The investigated characteristics, which were all deduced from geophysical wire-line logs, include lithology, porosity, permeability, fluid saturation, and net to gross thickness. To characterise the reservoir on the field, a suite of wire-line logs including gamma ray, resistivity, spontaneous potential, and density logs for three wells (WELL_1X, WELL_2X, and WELL_3X) from the Tano Cape Three Point basin were studied. The analyses that were done included lithology delineation, reservoir identification, and petrophysical parameter determination for the identified reservoirs. The tops and bases of the three wells analysed were marked at a depth of 1203.06 - 2015.64 m, 3863.03 - 4253.85 m and 2497.38 - 2560.32 m respectively. There were no hydrocarbons in the reservoirs from the studies. The petrophysical parameters computed for each reservoir provided porosities of 13%, 3% and 11% respectively. The water saturation also determined for these three wells (WELL_1X, WELL_2X and WELL_3X) were 94%, 95% and 89% respectively. These results together with the behaviour of the density and neutron logs suggested that these wells are wildcat wells. 展开更多
关键词 Petrophysical Cape Three Points reservoirs
下载PDF
Fractal model of spontaneous imbibition in low-permeability reservoirs coupled with heterogeneity of pore seepage channels and threshold pressure
13
作者 Ming-Sheng Zuo Hao Chen +3 位作者 Xi-Liang Liu Hai-Peng Liu Yi Wu Xin-Yu Qi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1002-1017,共16页
Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability res... Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability reservoirs is extremely challenging.Commonly,traditional SI models based on single or averaged capillary tortuosity ignore the influence of heterogeneity of pore seepage channels and the threshold pressure(TP)on imbibition.Therefore,in this work,based on capillary model and fractal theory,a mathematical model of characterizing SI considering heterogeneity of pore seepage channels is established.On this basis,the threshold pressure was introduced to determine the pore radius at which the wetted phase can displace oil.The proposed new SI model was verified by imbibition experimental data.The study shows that for weakly heterogeneous cores with permeability of 0-1 m D,the traditional SI model can characterize the imbibition process relatively accurately,and the new imbibition model can increase the coefficient of determination by 1.05 times.However,traditional model has serious deviations in predicting the imbibition recovery for cores with permeability of 10-50 m D.The new SI model coupling with heterogeneity of pore seepage channels and threshold pressure effectively solves this problem,and the determination coefficient is increased from 0.344 to 0.922,which is increased by2.68 times.For low-permeability reservoirs,the production of the oil in transitional pores(0.01-0.1μm)and mesopores(0.1-1μm)significantly affects the imbibition recovery,as the research shows that when the heterogeneity of pore seepage channels is ignored,the oil recovery in transitional pores and mesopores decreases by 7.54%and 4.26%,respectively.Sensitivity analysis shows that increasing interfacial tension,decreasing contact angle,oil-water viscosity ratio and threshold pressure will increase imbibition recovery.In addition,there are critical values for the influence of these factors on the imbibition recovery,which provides theoretical support for surfactant optimization. 展开更多
关键词 Spontaneous imbibition Low-permeability reservoir Fractal model Threshold pressure Capillary tube
下载PDF
Thermally-induced cracking behaviors of coal reservoirs subjected to cryogenic liquid nitrogen shock
14
作者 Songcai Han Qi Gao +5 位作者 Xinchuang Yan Lile Li Lei Wang Xian Shi Chuanliang Yan Daobing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2894-2908,共15页
The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t... The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs. 展开更多
关键词 Coal reservoirs Cryogenic shock Thermal cracking behaviors Fracture morphology
下载PDF
Seismic identification and characterization of complex storage space oil and gas reservoirs
15
作者 XiaoYu-Jiang Tao Song +5 位作者 Li Deng-Gan Xiao Yue-Zhou Jing Liang Lele-Wei Ming Zhang Xiaofeng-Dai 《Applied Geophysics》 SCIE CSCD 2024年第3期606-615,620,共11页
To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of ... To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of porous reservoir prediction.Scattering imaging three-parameter wavelet transform technology was used to accurately predict small-scale cave bodies.The joint inversion method of velocity and amplitude anisotropy was developed to improve the accuracy of small and medium-sized fracture prediction.The results of multiscale fracture modeling and characterization,interwell connectivity analysis,and connection path prediction are consistent with the production condition.Finally,based on the above prediction findings,favorable reservoir development areas were predicted.The above ideas and strategies have great application value for the efficient exploration and development of complex storage space reservoirs and the optimization of high-yield well locations. 展开更多
关键词 complex storage space fracture prediction reservoir prediction cave prediction
下载PDF
Fluid-rock interaction experiments with andesite at 100℃ for potential carbon storage in geothermal reservoirs
16
作者 Grace E.Belshaw Elisabeth Steer +4 位作者 Yukun Ji Herwin Azis Benyamin Sapiie Bagus Muljadi Veerle Vandeginste 《Deep Underground Science and Engineering》 2024年第3期369-382,共14页
Geothermal energy extraction often results in the release of naturally occurring carbon dioxide(CO_(2))as a byproduct.Research on carbon storage using volcanic rock types other than basalt under both acidic and elevat... Geothermal energy extraction often results in the release of naturally occurring carbon dioxide(CO_(2))as a byproduct.Research on carbon storage using volcanic rock types other than basalt under both acidic and elevated temperature conditions has been limited so far.Our study uses batch reactor experiments at 100℃ to investigate the dissolution of andesite rock samples obtained from an active geothermal reservoir in Sumatra(Indonesia).The samples are subjected to reactions with neutral-pH fluids and acidic fluids,mimicking the geochemical responses upon reinjection of geothermal fluids,either without or with dissolved acidic gases,respectively.Chemical elemental analysis reveals the release of Ca^(2+)ions into the fluids through the dissolution of feldspar.The overall dissolution rate of the rock samples is 2.4×10^(–11)to 4.2×10^(–11)mol/(m^(2)·s),based on the Si release during the initial 7 h of the experiment.The dissolution rates are about two orders of magnitude lower than those reported for basaltic rocks under similar reaction conditions.This study offers valuable insights into the potential utilization of andesite reservoirs for effective CO_(2) storage via mineralization. 展开更多
关键词 ANDESITE carbon sequestration geothermal reservoirs plagioclase dissolution
下载PDF
Dynamic interwell connectivity analysis of multi-layer waterflooding reservoirs based on an improved graph neural network
17
作者 Zhao-Qin Huang Zhao-Xu Wang +4 位作者 Hui-Fang Hu Shi-Ming Zhang Yong-Xing Liang Qi Guo Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1062-1080,共19页
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi... The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil. 展开更多
关键词 Graph neural network Dynamic interwell connectivity Production-injection splitting Attention mechanism Multi-layer reservoir
下载PDF
A Novel Fracturing Fluid with High-Temperature Resistance for Ultra-Deep Reservoirs
18
作者 Lian Liu Liang Li +2 位作者 Kebo Jiao Junwei Fang Yun Luo 《Fluid Dynamics & Materials Processing》 EI 2024年第5期975-987,共13页
Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ... Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks. 展开更多
关键词 Ultra-deep reservoir high-temperature resistance weighted fracturing fluid guanidine gum potassium formatted
下载PDF
Performance and enhanced oil recovery efficiency of an acid-resistant polymer microspheres of anti-CO_(2) channeling in low-permeability reservoirs
19
作者 Hai-Zhuang Jiang Hong-Bin Yang +5 位作者 Ruo-Sheng Pan Zhen-Yu Ren Wan-Li Kang Jun-Yi Zhang Shi-Long Pan Bauyrzhan Sarsenbekuly 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2420-2432,共13页
CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can... CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can also cause severe CO_(2) gas channeling problems.Therefore,anti-gas channeling is a necessary measure to improve the effect of CO_(2) flooding.The kind of anti-gas channeling refers to the plugging of fractures in the deep formation to prevent CO_(2) gas channeling,which is different from the wellbore leakage.Polymer microspheres have the characteristics of controllable deep plugging,which can achieve the profile control of low-permeability fractured reservoirs.In acidic environments with supercritical CO_(2),traditional polymer microspheres have poor expandability and plugging properties.Based on previous work,a systematic evaluation of the expansion performance,dispersion rheological properties,stability,deep migration,anti-CO_(2) channeling and enhanced oil recovery ability of a novel acid-resistant polymer microsphere(DCNPM-A)was carried out under CQ oilifield conditions(salinity of85,000 mg/L,80℃,pH=3).The results show that the DCNPM-A microsphere had a better expansion performance than the traditional microsphere,with a swelling rate of 13.5.The microsphere dispersion with a concentration of 0.1%-0.5%had the advantages of low viscosity,high dispersion and good injectability in the low permeability fractured core.In the acidic environment of supercritical CO_(2),DCNPM-A microspheres showed excellent stability and could maintain strength for over 60 d with less loss.In core experiments,DCNPM-A microspheres exhibited delayed swelling characteristics and could effectively plug deep formations.With a plugging rate of 95%,the subsequent enhanced oil recovery of CO_(2) flooding could reach 21.03%.The experimental results can provide a theoretical basis for anti-CO_(2)channeling and enhanced oil recovery in low-permeability fractured reservoirs. 展开更多
关键词 Low-permeability reservoir Anti-CO_(2)channeling Polymer microsphere Acid resistance
下载PDF
Optimization performance of quantum endoreversible Otto machines with dual-squeezed reservoirs
20
作者 Haoguang Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期198-204,共7页
We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate t... We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum c criterion will degenerate toη-=η_(C)/(2-η_(C))andε-=(√9+8ε_(C)-3)/2 when symmetric squeezing is satisfied,respectively.We also investigated the influences of squeezing degree on the performance optimization of quantum Otto heat engines at the maximum work output and refrigerators at the maximum X criterion.These analytical results show that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum X criterion can be improved,reduced or even inhibited in asymmetric squeezing.Furthermore,we also find that the efficiency of quantum Otto heat engines at maximum work output is lower than that obtained from the Otto heat engines based on a single harmonic oscillator system.However,the coefficient of performance of the corresponding refrigerator is higher. 展开更多
关键词 quantum Otto heat engine quantum Otto refrigerator optimization performance dual-squeezed reservoirs
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部