针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大...针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大池化,以保留输入特征在水平和垂直方向的显著和细节信息;利用RFB具有不同大小感受野的优势,在水平和垂直方向分别使用RFB模块代替CA的融合特征统一卷积,以同时提取不同大小目标的特征;引入包含不同大小卷积核和步长的CBS模块,替换CA的二维普通卷积,进一步提取水平和垂直方向的特征,得到重新加权的输出特征。CARFB模块在水平和垂直方向保存目标位置信息,利用不同感受野提取不同大小目标的强辨别性特征,从而具有更强的特征学习能力。为了验证提出的即插即用模块CARFB的性能,将其嵌入ObjectBox目标检测框架,得到ObjectBox-CARFB模型;用CARFB模块替换RFBnet中的RFB模块,得到CARFBnet目标检测模型。MSCOCO数据集的实验测试表明,ObjectBox-CARFB模型的性能得到全面提升,尤其对小目标的检测性能提升突出;PASCALVOC和MSCOCO数据集的实验结果表明,CARFBnet300和CARFBnet512的目标检测能力分别优于原始RFBnet300和RFBnet512模型,并优于其他同系列对比模型。提出的CARFB模块具有更强的特征学习能力,对不同尺度目标均能取得较好的检测效果,特别是在小目标检测方面,效果提升显著。提出的CARFB模块可以嵌入到任何一个卷积神经网络,能保存更多的目标信息,具有更强的特征学习能力和更高的网络性能,对不同尺度目标均能取得较好的检测效果,尤其对小目标的检测效果提升显著。展开更多
针对红外弱小目标容易在网络迭代过程中损失纹理细节信息,从而导致目标定位和轮廓分割的准确性下降的问题,提出一种基于信息补偿的红外弱小目标检测方法。首先,利用图像特征提取(IFE)模块编码红外源图像的浅层细节及深层语义特征;其次,...针对红外弱小目标容易在网络迭代过程中损失纹理细节信息,从而导致目标定位和轮廓分割的准确性下降的问题,提出一种基于信息补偿的红外弱小目标检测方法。首先,利用图像特征提取(IFE)模块编码红外源图像的浅层细节及深层语义特征;其次,构建多级信息补偿(MIC)模块通过聚合相邻级别的特征对编码阶段下采样后的特征进行信息补偿;随后,引入全局目标响应(GTR)模块联合特征图的全局上下文信息对卷积局部性的限制进行补偿;最后,构建非对称交叉融合(ACF)模块对浅层和深层特征进行融合,以实现目标解码时纹理信息与位置信息的保留,进而完成对红外弱小目标的检测。在公开的NUAA-SIRST(Nanjing University of Aeronautics and Astronautics-Singleframe InfraRed Small Target)和NUDT-SIRST(National University of Defense Technology-Single-frame InfraRed Small Target)混合数据集上训练和测试的实验结果表明,与UIUNet(U-Net in U-Net Network)、LSPM(Local Similarity Pyramid Modules)和DNANet(Dense Nested Attention Network)等方法相比,所提方法在交并比(IoU)上分别提高了9.2、8.9和5.5个百分点,在F1分数(F1-Score)上分别提高了6.0、5.4和3.1个百分点。以上表明所提方法对红外复杂背景图像中的弱小目标可以实现准确检测和有效分割。展开更多
在交通监控中进行车辆检测过程时,存在车辆互相遮挡和远距离目标尺寸不足的问题,导致在检测中存在漏检和误检情况。针对此问题,文中提出一种基于YOLOv4(You Only Look Once version 4)的多尺度融合与注意力机制的交通车辆检测算法。在YO...在交通监控中进行车辆检测过程时,存在车辆互相遮挡和远距离目标尺寸不足的问题,导致在检测中存在漏检和误检情况。针对此问题,文中提出一种基于YOLOv4(You Only Look Once version 4)的多尺度融合与注意力机制的交通车辆检测算法。在YOLOv4的路径聚合网络中增加一个新的特征层进行多尺度特征融合,提升模型对底层纹理特征的提取能力。在YOLO Head检测头前嵌入ECA(Efficient Channel Attention)通道注意力模块,对聚合后的特征进行合理的抑制和增强,将CIoU(Complete Intersection over Union)损失函数替换为Soft-CIoU损失函数,提高小目标车辆对损失函数的贡献度。在公开车辆数据集UA-DETRAC与KITTI中的实验结果表明,相较于原YOLOv4算法,所提算法的平均精度分别提升了2.45百分点和1.14百分点,检测速度达到41.67 frame·s^(-1)。相较于其他先进算法,所提算法在检测精度上表现良好。展开更多
文摘针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大池化,以保留输入特征在水平和垂直方向的显著和细节信息;利用RFB具有不同大小感受野的优势,在水平和垂直方向分别使用RFB模块代替CA的融合特征统一卷积,以同时提取不同大小目标的特征;引入包含不同大小卷积核和步长的CBS模块,替换CA的二维普通卷积,进一步提取水平和垂直方向的特征,得到重新加权的输出特征。CARFB模块在水平和垂直方向保存目标位置信息,利用不同感受野提取不同大小目标的强辨别性特征,从而具有更强的特征学习能力。为了验证提出的即插即用模块CARFB的性能,将其嵌入ObjectBox目标检测框架,得到ObjectBox-CARFB模型;用CARFB模块替换RFBnet中的RFB模块,得到CARFBnet目标检测模型。MSCOCO数据集的实验测试表明,ObjectBox-CARFB模型的性能得到全面提升,尤其对小目标的检测性能提升突出;PASCALVOC和MSCOCO数据集的实验结果表明,CARFBnet300和CARFBnet512的目标检测能力分别优于原始RFBnet300和RFBnet512模型,并优于其他同系列对比模型。提出的CARFB模块具有更强的特征学习能力,对不同尺度目标均能取得较好的检测效果,特别是在小目标检测方面,效果提升显著。提出的CARFB模块可以嵌入到任何一个卷积神经网络,能保存更多的目标信息,具有更强的特征学习能力和更高的网络性能,对不同尺度目标均能取得较好的检测效果,尤其对小目标的检测效果提升显著。
文摘针对红外弱小目标容易在网络迭代过程中损失纹理细节信息,从而导致目标定位和轮廓分割的准确性下降的问题,提出一种基于信息补偿的红外弱小目标检测方法。首先,利用图像特征提取(IFE)模块编码红外源图像的浅层细节及深层语义特征;其次,构建多级信息补偿(MIC)模块通过聚合相邻级别的特征对编码阶段下采样后的特征进行信息补偿;随后,引入全局目标响应(GTR)模块联合特征图的全局上下文信息对卷积局部性的限制进行补偿;最后,构建非对称交叉融合(ACF)模块对浅层和深层特征进行融合,以实现目标解码时纹理信息与位置信息的保留,进而完成对红外弱小目标的检测。在公开的NUAA-SIRST(Nanjing University of Aeronautics and Astronautics-Singleframe InfraRed Small Target)和NUDT-SIRST(National University of Defense Technology-Single-frame InfraRed Small Target)混合数据集上训练和测试的实验结果表明,与UIUNet(U-Net in U-Net Network)、LSPM(Local Similarity Pyramid Modules)和DNANet(Dense Nested Attention Network)等方法相比,所提方法在交并比(IoU)上分别提高了9.2、8.9和5.5个百分点,在F1分数(F1-Score)上分别提高了6.0、5.4和3.1个百分点。以上表明所提方法对红外复杂背景图像中的弱小目标可以实现准确检测和有效分割。
文摘针对现有布匹瑕疵检测模型存在的参数量大、训练耗时和准确率低等情况,提出了一种基于YOLOv5改进的布匹瑕疵检测(fabric defect detection YOLO,FDD-YOLO)算法.首先,在特征提取阶段引入ConvMp模块,实现跨通道特征融合,减少特征下采样时的信息丢失;其次,将重参幽灵卷积(RepGhost)与残差结构相融合,降低模型参数,并减少冗余信息的传递;最后,设计了轻量级注意力聚合结构,以增强模型对小目标的特征提取能力,抑制无用信息的传递.结果表明,相较于YOLOv5,FDD-YOLO算法在ZJU-Leaper数据集和天池布匹瑕疵数据集上平均精度分别提升了3.3和4.6百分点,同时,模型参数量缩减至3.2 M.
文摘在交通监控中进行车辆检测过程时,存在车辆互相遮挡和远距离目标尺寸不足的问题,导致在检测中存在漏检和误检情况。针对此问题,文中提出一种基于YOLOv4(You Only Look Once version 4)的多尺度融合与注意力机制的交通车辆检测算法。在YOLOv4的路径聚合网络中增加一个新的特征层进行多尺度特征融合,提升模型对底层纹理特征的提取能力。在YOLO Head检测头前嵌入ECA(Efficient Channel Attention)通道注意力模块,对聚合后的特征进行合理的抑制和增强,将CIoU(Complete Intersection over Union)损失函数替换为Soft-CIoU损失函数,提高小目标车辆对损失函数的贡献度。在公开车辆数据集UA-DETRAC与KITTI中的实验结果表明,相较于原YOLOv4算法,所提算法的平均精度分别提升了2.45百分点和1.14百分点,检测速度达到41.67 frame·s^(-1)。相较于其他先进算法,所提算法在检测精度上表现良好。