期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries
1
作者 Yiding Li Li Wang +3 位作者 Youzhi Song Wenwei Wang Cheng Lin Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期268-308,共41页
The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal st... The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life. 展开更多
关键词 smart battery Advanced embedded optical fiber sensor battery internal physical/chemical state Quality-reliability-life characteristic
下载PDF
Towards Long Lifetime Battery:AI-Based Manufacturing and Management 被引量:6
2
作者 Kailong Liu Zhongbao Wei +3 位作者 Chenghui Zhang Yunlong Shang Remus Teodorescu Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1139-1165,共27页
Technologies that accelerate the delivery of reliable battery-based energy storage will not only contribute to decarbonization such as transportation electrification,smart grid,but also strengthen the battery supply c... Technologies that accelerate the delivery of reliable battery-based energy storage will not only contribute to decarbonization such as transportation electrification,smart grid,but also strengthen the battery supply chain.As battery inevitably ages with time,losing its capacity to store charge and deliver it efficiently.This directly affects battery safety and efficiency,making related health management necessary.Recent advancements in automation science and engineering raised interest in AI-based solutions to prolong battery lifetime from both manufacturing and management perspectives.This paper aims at presenting a critical review of the state-of-the-art AI-based manufacturing and management strategies towards long lifetime battery.First,AI-based battery manufacturing and smart battery to benefit battery health are showcased.Then the most adopted AI solutions for battery life diagnostic including state-of-health estimation and ageing prediction are reviewed with a discussion of their advantages and drawbacks.Efforts through designing suitable AI solutions to enhance battery longevity are also presented.Finally,the main challenges involved and potential strategies in this field are suggested.This work will inform insights into the feasible,advanced AI for the health-conscious manufacturing,control and optimization of battery on different technology readiness levels. 展开更多
关键词 Artificial intelligence battery health management battery life diagnostic battery manufacturing smart battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部