A kind of piezoresistive response extraction method for smart cement-based composites/sensors was proposed.Two kinds of typical piezoresistive cement-based composites/sensors were fabricated by respectively adding car...A kind of piezoresistive response extraction method for smart cement-based composites/sensors was proposed.Two kinds of typical piezoresistive cement-based composites/sensors were fabricated by respectively adding carbon nanotubes and nickel powders as conductive fillers into cement paste or cement mortar.The variation in measured electrical resistance of such cement-based composites/sensors was explored without loading and under repeated compressive loading and impulsive loading.The experimental results indicate that the measured electrical resistance of piezoresistive cement-based composites/sensors exhibits a two-stage variation trend of fast increase and steady increase with measurement time without loading,and an irreversible increase after loading.This results from polarization caused by ionic conduction in these composites/sensors.After reaching a plateau,the measured electrical resistance can be divided into an electrical resistance part and an electrical capacity part.The piezoresistive responses of electrical resistance part in measured electrical resistance to loading can be extracted by eliminating the linear electrical capacity part in measured electrical resistance.展开更多
The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can se...The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress and strain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relation of thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to the increase in the material volume resistivity during crack generation or propagation and the decrease in the resistivity during crack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect in the cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage and temperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in the concrete structures.展开更多
The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of ce...The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials,4% by the weight of cement) were studied.The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena.The percolation threshold was about 20%.A clear piezoresistive effect was observed in CFGCC with 1wt% of carbon fibers,20wt% or 30wt% of graphite powders under uniaxial compressive tests,indicating that this type of smart composites was a promising candidate for strain sensing.The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22,respectively.With the addition of CCCW,the mechanical properties of CFGCC were improved,which benefited CFGCC piezoresistivity of stability.展开更多
The influences of the fiber volume fraction on the electrical conductivity and the fraction change of electrical resistance under three-point-bending test were discussed.It is found that the relationship beween the el...The influences of the fiber volume fraction on the electrical conductivity and the fraction change of electrical resistance under three-point-bending test were discussed.It is found that the relationship beween the electrical conductivity of composites and the fiber volume fraction can be explained by the percolation theory and the change of electrical resistance of specimens reflects to the process of loading.The sensitivity and the response of the change of electrical resistance to the load for specimens with different fiber volume fractions are quite different.which provide an important guide for the manufacture of conductive and intrinsically smart carbon fiber composite.展开更多
The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete unders...The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete understanding and a quantitative modeling of ITZ are still lacking. Consequently, an integrated modeling and experimental study were conducted. First, the theoretical calculation model of the ITZ volume fraction about the rotary ellipsoidal aggregate particles was established based on the nearest surface function formula. Its calculation programs were written based on Visual Basic 6.0 language and achieved visualization and functionalization. Then, the influencing factors of ITZ volume fraction of the ellipsoidal aggregate particles and the overlapping degree between the ITZ were systematically analyzed. Finally, the calculation models of ITZ volume fraction on actual ellipsoidal aggregate were given, based on cobblestones or pebbles particles with naturally ellipsoidal shape. The results indicate that the calculation model proposed is highly reliable.展开更多
Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the el...Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the electrical resistivity and piezoresistive responses in two directions of aligned steel fiber cement-based composites,i e,parallel and perpendicular to MF,were measured.The effects of several variables,eg,steel fiber content,curing age,humidity,and temperature,on anisotropic electrical property were studied.The cyclic and failure piezoresistive responses in different directions were tested.It is found that the aligned steel fibers in the as-obtained SFCCs have a high orientation factor more than 0.88.Besides,SFCCs with aligned steel fibers exhibit an obvious anisotropic conductivity and piezoelectric sensitivity.The electrical conductivity of SFCCs with aligned steel fibers is less affected by temperature and humidity.At the steel fiber content of 2.5wt%,the piezoelectric sensitivity coefficient of SFCCs in the direction parallel to MF has the highest value of 324.14.In addition,the piezoresistive properties of SFCCs with aligned steel fibers in the direction parallel to MF indicate excellent sensitivity and stability under cyclic loading and monotonic loading.展开更多
The texture of interfacial zone between cement paste and quartz in the cement-based composites containing polyvinyl alcohol (PVA), methylcellulose (MC) and their potyblend in an amount of 10 wt % with respect to cemen...The texture of interfacial zone between cement paste and quartz in the cement-based composites containing polyvinyl alcohol (PVA), methylcellulose (MC) and their potyblend in an amount of 10 wt % with respect to cement, as well as the texture of dehydrated bodies of PVA, MC, and the potyblend solutions, were investigated with SEM. The network texture of the dehydrated polyblend is confirmed by comparing the texture of dehydrated bodies of PVA and MC. The network texture has restrained the movement of polyblend molecules in the cement mortar but is helpful to forming a coherent interface between cement paste and quartz. The key factor of forming the coherent interface is not the neutralization reaction between H + from hydrolysis of quarts: and OH- from hydration of cement, but the electrostatic attraction and the chemical reaction between polar groups on the polyblend molecule and cations and onions from hydrolysis of quartz and hydration of cement, respectively. The model of the coherent interface formation is that excessive [HSiO3]- and [SiO3]2- onions are bonded with the hydrated cations such as Ca2+ and Al3+ , which is confirmed by the gel containing Ca and Si on the quartz surface.展开更多
In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the co...In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.展开更多
In view of the disadvantage that the mechanical properties of cement-based composites can be significantly reduced by incorporating waste rubber powder in situ, the surface modification methods of the original rubber ...In view of the disadvantage that the mechanical properties of cement-based composites can be significantly reduced by incorporating waste rubber powder in situ, the surface modification methods of the original rubber powder by coupling agent KH560, sodium hydroxide, polyvinyl alcohol (PVA), methyl hydroxyethyl cellulose ether (MHEC) and tetraethyl orthosilicate (TEOS) as precursors were adopted respectively. The modification of waste rubber powder was studied by Change rate of mortar strength of cement-based composite mortar mixed with waste rubber powder. The results show that the hybrid modification method using tetraethyl orthosilicate as precursor has better ef-fect. When 5 phr ethyl orthosilicate is added, the compressive strength and flexural strength of cement-based composite mortar can be increased by 31.7% and 28%. Scanning electron microscopy (SEM) results show that the surface of waste rubber powder with good modification effect has many pro-trusions and flake-like porous structures which are beneficial to its bonding with cement-based materials.展开更多
Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those...Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those that support the desirable durability, resilience, and sustainability of civil infrastructure that directly impact our quality of life. It is proposed that high-performance material characteristics include tensile ductility, autogenous crack-width control, and material “greenness.” Furthermore, smart functionalities should be aimed at enhancing infrastructure durability, resilience, and sustainability by responding to changes in the surrounding environment of the structure in order to perform desirable functions, thus causing the material to behave in a manner more akin to certain biological materials. Based on recent advances in engineered cementitious composites (ECCs), this paper suggests that concrete embodying such high-performance characteristics and smart multifunctionalities can be designed, and holds the potential to fulfill the expected civil infrastructure needs of the 21st century. Highlights of relevant properties of ECCs are provided, and directions for necessary future research are indicated.展开更多
N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the...N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone (ITZ) between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself. For the convenience of applications, the mortar and concrete were considered as a four-phase spherical model, consisting of cement continuous phase, dispersed aggregates phase, interface transition zone and their homogenized effective medium phase. A general effective medium equation was established to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure. During calculation, the tortuosity (n) and constrictivity factors (Ds/Do) of pore in the hardened pastes are n^3.2, Ds/Do=l.Ox 10-4 respectively from the test data. The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results; The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.展开更多
Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and...Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance.展开更多
This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical propertie...This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.展开更多
A new Martensitic transformation kinetic model for shape memory alloy (SMA) is proposed based on the phenomenological description of the Martensitic transformation heat flow-temperature curve and on the linear relat...A new Martensitic transformation kinetic model for shape memory alloy (SMA) is proposed based on the phenomenological description of the Martensitic transformation heat flow-temperature curve and on the linear relationship between the partial derivatives of Martensite fraction and of Gbbis free energy with respect to the temperature. A meso-mechanical model is developed to describe the longitudinal stiffness reduction and thermo-dilatation variation of the composites caused by fiber breaking or fiber peeling off the base material. One-dimensional incremental constitutive relation is then established for SMA wire reinforced smart composites with damages by introducing three parameters to respectively describe the extent of fiber breaking, fiber peeling off the base material and interface weakening. The results presented herein may provide a theoretical basis for further studying on SMA smart composites with damages.展开更多
Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing syste...Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing systems, namely, spherical grading system and nano-fiber reinforced system were designed. Properties and interfacial microstructure of the two systems were studied according to secondary interface theory. It was shown that nano-fiber mineral materials can improve the grain grading of the admixture, increase the density of the system, improve the microstructure of the interface and the hardened paste, and enhance the uniformity of cement-based materials mixed with composite micro-grains and greatly increase their wearable rigidity and flexure strength. In this paper, two kinds of interface models, including spherical grain model and nano-fiber reinforced interface model of the cement-based materials mixed with composite micro-grains, were brought forward.展开更多
Spiky spherical nickel powder with sharp nano-tips on its surface is a kind of excellent fillers for developing pressure-sensitive cement-based composites/sensors for traffic detection,structural health monitoring,and...Spiky spherical nickel powder with sharp nano-tips on its surface is a kind of excellent fillers for developing pressure-sensitive cement-based composites/sensors for traffic detection,structural health monitoring,and border and military security.The sharp nano-tips on the surface of spiky spherical nickel particles can induce field emission and tunneling effects,which leads to the ultrahigh pressure-sensitive responses of the cement-based composites.In this paper,we systematically introduce research on nanotip-induced ultrahigh pressure-sensitive cement-based composites/sensors,with attentions to their pressure-sensitive property and sensing mechanism,pressure-sensitive characteristic model,and smart structure system for traffic detection.展开更多
Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelec...Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelectric composites,and show superior properties to monolithic piezoelectric wafer due to their distinctive structures.Numerous work has focused on the performance prediction of the composites by evaluation of structural parameters and properties of the constituent materials with analytical and numerical methods.Various applications have been explored for the piezoelectric fiber composites,including vibration and noise control,health monitoring,morphing of structures and energy harvesting,in which the composites play key role and demonstrate the necessity for further development.展开更多
The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to asse...The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity.展开更多
Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, dif...Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, different sensor nodes can cooperate and compose with each other to complete more complicated tasks for user. However, because of the regional characteristic of sensor nodes, merging data with different sensitivities become a primary requirement to the composite services, and information flow security should be intensively considered during service composition. In order to mitigate the great cost caused by the complexity of modeling and the heavy load of single-node verification to the energy-limited sensor node, in this paper, we propose a new distributed verification framework to enforce information flow security on composite services of smart sensor network. We analyze the information flows in composite services and specify security constraints for each service participant. Then we propose an algorithm over the distributed verification framework involving each sensor node to participate in the composite service verification based on the security constraints. The experimental results indicate that our approach can reduce the cost of verification and provide a better load balance.展开更多
Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elastic...Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elasticity, arbitrary elongation along with soft devices, and smart properties involving thermal self-healing, thermochromism and so on. Nacre-like composites with excellent in-plane heat dissipation are ideal as heat spreaders for thin and planar electronics. However, the intrinsically poor viscoelasticity, i.e., adhesion and elasticity, prevents them from simultaneous self-adhesion and arbitrary elongation along with current flexible devices as well as incurring high interfacial thermal impedance. In this paper, we propose a soft thermochromic composite(STC) membrane with a layered structure, considerable stretchability, high in-plane thermal conductivity(~30 Wm^(-1) K^(-1)), low thermal contact resistance(~12 mm^2 KW^(-1), 4–5 times lower than that of silver paste), strong yet sustainable adhesion forces(~4607 Jm^(-2), 2220 Jm^(-2) greater than that of epoxy paste) and self-healing efficiency. As a self-adhesive heat spreader, it implements efficient cooling of various soft electronics with a temperature drop of 20℃ than the polyimide case. In addition to its self-healing function, the chameleon-like behavior of STC facilitates temperature monitoring by the naked eye, hence enabling smart thermal management.展开更多
基金Funded by the National Natural Science Foundation of China(Nos. 51178148,50808055)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(No.HIT.NSRIF.2009096)the Program for New Century Excellent Talents University of China(No.NCET-0798)
文摘A kind of piezoresistive response extraction method for smart cement-based composites/sensors was proposed.Two kinds of typical piezoresistive cement-based composites/sensors were fabricated by respectively adding carbon nanotubes and nickel powders as conductive fillers into cement paste or cement mortar.The variation in measured electrical resistance of such cement-based composites/sensors was explored without loading and under repeated compressive loading and impulsive loading.The experimental results indicate that the measured electrical resistance of piezoresistive cement-based composites/sensors exhibits a two-stage variation trend of fast increase and steady increase with measurement time without loading,and an irreversible increase after loading.This results from polarization caused by ionic conduction in these composites/sensors.After reaching a plateau,the measured electrical resistance can be divided into an electrical resistance part and an electrical capacity part.The piezoresistive responses of electrical resistance part in measured electrical resistance to loading can be extracted by eliminating the linear electrical capacity part in measured electrical resistance.
基金This work was supported by NSFC(No.59908007)a foundation for phosphor plan from the Science and Technology Committee of Shanghai Municipality(No.01QE14052)The financial support from the Foundation for the University Key Studies of Shanghai was also gratefully acknowledged.
文摘The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress and strain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relation of thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to the increase in the material volume resistivity during crack generation or propagation and the decrease in the resistivity during crack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect in the cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage and temperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in the concrete structures.
基金Funded by the National Natural Science Foundation of China(No.50878170 and No. 10672128)
文摘The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(1% by the weight of cement),graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials,4% by the weight of cement) were studied.The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena.The percolation threshold was about 20%.A clear piezoresistive effect was observed in CFGCC with 1wt% of carbon fibers,20wt% or 30wt% of graphite powders under uniaxial compressive tests,indicating that this type of smart composites was a promising candidate for strain sensing.The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22,respectively.With the addition of CCCW,the mechanical properties of CFGCC were improved,which benefited CFGCC piezoresistivity of stability.
文摘The influences of the fiber volume fraction on the electrical conductivity and the fraction change of electrical resistance under three-point-bending test were discussed.It is found that the relationship beween the electrical conductivity of composites and the fiber volume fraction can be explained by the percolation theory and the change of electrical resistance of specimens reflects to the process of loading.The sensitivity and the response of the change of electrical resistance to the load for specimens with different fiber volume fractions are quite different.which provide an important guide for the manufacture of conductive and intrinsically smart carbon fiber composite.
基金Funded by the National Natural Science Foundations of China(Nos.51478278 and 51408380)the Natural Science Foundation of Hebei Province(No.E2014210149)Higher Education Science and Technology Research Project of Hebei Province(No.ZD2016065)
文摘The interfacial transition zone (ITZ) between the aggregates and the bulk paste is the weakest zone of ordinary concrete, which largely determines its mechanical and transporting properties. However, a complete understanding and a quantitative modeling of ITZ are still lacking. Consequently, an integrated modeling and experimental study were conducted. First, the theoretical calculation model of the ITZ volume fraction about the rotary ellipsoidal aggregate particles was established based on the nearest surface function formula. Its calculation programs were written based on Visual Basic 6.0 language and achieved visualization and functionalization. Then, the influencing factors of ITZ volume fraction of the ellipsoidal aggregate particles and the overlapping degree between the ITZ were systematically analyzed. Finally, the calculation models of ITZ volume fraction on actual ellipsoidal aggregate were given, based on cobblestones or pebbles particles with naturally ellipsoidal shape. The results indicate that the calculation model proposed is highly reliable.
基金Funded by the National Natural Science Foundation of China(Nos.51478164 and 52079048)the Key Research&Development Plan of Jiangsu Province,China(No.BE2021704)。
文摘Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the electrical resistivity and piezoresistive responses in two directions of aligned steel fiber cement-based composites,i e,parallel and perpendicular to MF,were measured.The effects of several variables,eg,steel fiber content,curing age,humidity,and temperature,on anisotropic electrical property were studied.The cyclic and failure piezoresistive responses in different directions were tested.It is found that the aligned steel fibers in the as-obtained SFCCs have a high orientation factor more than 0.88.Besides,SFCCs with aligned steel fibers exhibit an obvious anisotropic conductivity and piezoelectric sensitivity.The electrical conductivity of SFCCs with aligned steel fibers is less affected by temperature and humidity.At the steel fiber content of 2.5wt%,the piezoelectric sensitivity coefficient of SFCCs in the direction parallel to MF has the highest value of 324.14.In addition,the piezoresistive properties of SFCCs with aligned steel fibers in the direction parallel to MF indicate excellent sensitivity and stability under cyclic loading and monotonic loading.
基金Funded by Natural Science Foundation of China (No. 49802004)
文摘The texture of interfacial zone between cement paste and quartz in the cement-based composites containing polyvinyl alcohol (PVA), methylcellulose (MC) and their potyblend in an amount of 10 wt % with respect to cement, as well as the texture of dehydrated bodies of PVA, MC, and the potyblend solutions, were investigated with SEM. The network texture of the dehydrated polyblend is confirmed by comparing the texture of dehydrated bodies of PVA and MC. The network texture has restrained the movement of polyblend molecules in the cement mortar but is helpful to forming a coherent interface between cement paste and quartz. The key factor of forming the coherent interface is not the neutralization reaction between H + from hydrolysis of quarts: and OH- from hydration of cement, but the electrostatic attraction and the chemical reaction between polar groups on the polyblend molecule and cations and onions from hydrolysis of quartz and hydration of cement, respectively. The model of the coherent interface formation is that excessive [HSiO3]- and [SiO3]2- onions are bonded with the hydrated cations such as Ca2+ and Al3+ , which is confirmed by the gel containing Ca and Si on the quartz surface.
基金supported within the framework of the Basic Research Project of the Yunnan Province-Young Program(No.2019FD097)Agricultural Joint Special Project of the Yunnan Province-General Program(No.202101BD070001-118).
文摘In this paper,a split Hopkinson pressure bar(SHPB)was used to investigate the dynamic impact mechanical behavior of sisal fiber-reinforced cement-based composites(SFRCCs),and the microscopic damage evolution of the composites was analyzed by scanning electron microscopy(SEM)and energy-dispersive X-ray spectrome-try(EDS).The results show that the addition of sisal fibers improves the impact resistance of cement-based composite materials.Compared with ordinary cement-based composites(OCCs),the SFRCCs demonstrate higher post-peak strength,ductility,and energy absorption capacity with higher fiber content.Moreover,the SFRCCs are strain rate sensitive materials,and their peak stress,ultimate strain,and energy integrals all increase with increasing strain rate.From the perspective of fracture failure characteristics,the failure of OCCs is dominated by the brittle failure of crystal cleavage.In contrast,the failure mode of the SFRCCs changes to microscale matrix cracks,multi-scale pull-out interface debonding of fibers(fine filaments and bundles),and mechanical interlock.This research provides an experimental basis for the engineering application of high-performance and green cement-based composites.
文摘In view of the disadvantage that the mechanical properties of cement-based composites can be significantly reduced by incorporating waste rubber powder in situ, the surface modification methods of the original rubber powder by coupling agent KH560, sodium hydroxide, polyvinyl alcohol (PVA), methyl hydroxyethyl cellulose ether (MHEC) and tetraethyl orthosilicate (TEOS) as precursors were adopted respectively. The modification of waste rubber powder was studied by Change rate of mortar strength of cement-based composite mortar mixed with waste rubber powder. The results show that the hybrid modification method using tetraethyl orthosilicate as precursor has better ef-fect. When 5 phr ethyl orthosilicate is added, the compressive strength and flexural strength of cement-based composite mortar can be increased by 31.7% and 28%. Scanning electron microscopy (SEM) results show that the surface of waste rubber powder with good modification effect has many pro-trusions and flake-like porous structures which are beneficial to its bonding with cement-based materials.
基金supported by a grant from the CMMI program at the United States National Science Foundation(1634694).
文摘Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those that support the desirable durability, resilience, and sustainability of civil infrastructure that directly impact our quality of life. It is proposed that high-performance material characteristics include tensile ductility, autogenous crack-width control, and material “greenness.” Furthermore, smart functionalities should be aimed at enhancing infrastructure durability, resilience, and sustainability by responding to changes in the surrounding environment of the structure in order to perform desirable functions, thus causing the material to behave in a manner more akin to certain biological materials. Based on recent advances in engineered cementitious composites (ECCs), this paper suggests that concrete embodying such high-performance characteristics and smart multifunctionalities can be designed, and holds the potential to fulfill the expected civil infrastructure needs of the 21st century. Highlights of relevant properties of ECCs are provided, and directions for necessary future research are indicated.
基金Funded by the National Basic Research Program of China (No.2009CB623203)the National High-Tech R&D Program of China (No.2008AA030794)the Postgraduates Research Innovation in University of Jiangsu Province in China (No.CX10B-064Z)
文摘N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone (ITZ) between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself. For the convenience of applications, the mortar and concrete were considered as a four-phase spherical model, consisting of cement continuous phase, dispersed aggregates phase, interface transition zone and their homogenized effective medium phase. A general effective medium equation was established to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure. During calculation, the tortuosity (n) and constrictivity factors (Ds/Do) of pore in the hardened pastes are n^3.2, Ds/Do=l.Ox 10-4 respectively from the test data. The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results; The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.
基金Funded by the National Key Research and Development Program of China(No.2018YFC0705400)National Natural Science Foundation of China(No.51678142)the Fundamental Research Funds for the Central Universities。
文摘Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance.
文摘This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.
基金the Aeronautical Science Foundation-of China(No.05G52054)the National Natural Science Foundation of China(No.10672077).
文摘A new Martensitic transformation kinetic model for shape memory alloy (SMA) is proposed based on the phenomenological description of the Martensitic transformation heat flow-temperature curve and on the linear relationship between the partial derivatives of Martensite fraction and of Gbbis free energy with respect to the temperature. A meso-mechanical model is developed to describe the longitudinal stiffness reduction and thermo-dilatation variation of the composites caused by fiber breaking or fiber peeling off the base material. One-dimensional incremental constitutive relation is then established for SMA wire reinforced smart composites with damages by introducing three parameters to respectively describe the extent of fiber breaking, fiber peeling off the base material and interface weakening. The results presented herein may provide a theoretical basis for further studying on SMA smart composites with damages.
文摘Silica fume, fly ash and nano-fiber mineral materials (NR powder) are employed to incorporate into cement-based materials. According to the grain grading mathematical model of cement-based materials, two packing systems, namely, spherical grading system and nano-fiber reinforced system were designed. Properties and interfacial microstructure of the two systems were studied according to secondary interface theory. It was shown that nano-fiber mineral materials can improve the grain grading of the admixture, increase the density of the system, improve the microstructure of the interface and the hardened paste, and enhance the uniformity of cement-based materials mixed with composite micro-grains and greatly increase their wearable rigidity and flexure strength. In this paper, two kinds of interface models, including spherical grain model and nano-fiber reinforced interface model of the cement-based materials mixed with composite micro-grains, were brought forward.
文摘Spiky spherical nickel powder with sharp nano-tips on its surface is a kind of excellent fillers for developing pressure-sensitive cement-based composites/sensors for traffic detection,structural health monitoring,and border and military security.The sharp nano-tips on the surface of spiky spherical nickel particles can induce field emission and tunneling effects,which leads to the ultrahigh pressure-sensitive responses of the cement-based composites.In this paper,we systematically introduce research on nanotip-induced ultrahigh pressure-sensitive cement-based composites/sensors,with attentions to their pressure-sensitive property and sensing mechanism,pressure-sensitive characteristic model,and smart structure system for traffic detection.
基金Project(51072235) supported by the National Natural Science Foundation of ChinaProject(11JJ1008) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(20110162110044) supported by the PhD Program Foundation of Ministry of Education of ChinaProject(7433001207) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2001JF3215) supported by Hunan Provincial Science and Technology Plan,China
文摘Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelectric composites,and show superior properties to monolithic piezoelectric wafer due to their distinctive structures.Numerous work has focused on the performance prediction of the composites by evaluation of structural parameters and properties of the constituent materials with analytical and numerical methods.Various applications have been explored for the piezoelectric fiber composites,including vibration and noise control,health monitoring,morphing of structures and energy harvesting,in which the composites play key role and demonstrate the necessity for further development.
文摘The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity.
基金supported in part by National Natural Science Foundation of China(61502368,61303033,U1135002 and U1405255)the National High Technology Research and Development Program(863 Program)of China(No.2015AA017203)+1 种基金the Fundamental Research Funds for the Central Universities(XJS14072,JB150308)the Aviation Science Foundation of China(No.2013ZC31003,20141931001)
文摘Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, different sensor nodes can cooperate and compose with each other to complete more complicated tasks for user. However, because of the regional characteristic of sensor nodes, merging data with different sensitivities become a primary requirement to the composite services, and information flow security should be intensively considered during service composition. In order to mitigate the great cost caused by the complexity of modeling and the heavy load of single-node verification to the energy-limited sensor node, in this paper, we propose a new distributed verification framework to enforce information flow security on composite services of smart sensor network. We analyze the information flows in composite services and specify security constraints for each service participant. Then we propose an algorithm over the distributed verification framework involving each sensor node to participate in the composite service verification based on the security constraints. The experimental results indicate that our approach can reduce the cost of verification and provide a better load balance.
基金the financial support from the National Science Foundation of China (NSFC) (No.52103178)Science and Technology Project of Sichuan Province (No. 2023NSFSC0997)+2 种基金Sixth Two-hundred Talent B plan of Sichuan Universitysupport by the Australian Research Council Discovery Program (DP190103290)Australian Research Council Future Fellowships (FT200100730, FT210100804)。
文摘Cutting-edge heat spreaders for soft and planar electronics require not only high thermal conductivity and a certain degree of flexibility but also remarkable self-adhesion without thermal interface materials, elasticity, arbitrary elongation along with soft devices, and smart properties involving thermal self-healing, thermochromism and so on. Nacre-like composites with excellent in-plane heat dissipation are ideal as heat spreaders for thin and planar electronics. However, the intrinsically poor viscoelasticity, i.e., adhesion and elasticity, prevents them from simultaneous self-adhesion and arbitrary elongation along with current flexible devices as well as incurring high interfacial thermal impedance. In this paper, we propose a soft thermochromic composite(STC) membrane with a layered structure, considerable stretchability, high in-plane thermal conductivity(~30 Wm^(-1) K^(-1)), low thermal contact resistance(~12 mm^2 KW^(-1), 4–5 times lower than that of silver paste), strong yet sustainable adhesion forces(~4607 Jm^(-2), 2220 Jm^(-2) greater than that of epoxy paste) and self-healing efficiency. As a self-adhesive heat spreader, it implements efficient cooling of various soft electronics with a temperature drop of 20℃ than the polyimide case. In addition to its self-healing function, the chameleon-like behavior of STC facilitates temperature monitoring by the naked eye, hence enabling smart thermal management.