Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ...Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.展开更多
基于M ind lin板理论、压电理论、粘弹性理论和理想流体方程,对充液圆柱壳主动约束阻尼结构在流固耦合条件下的建模进行了研究。利用拉格朗日方法得到结构的动力学方程,利用GHM方法描述粘弹性阻尼的本构关系,结合流体方程建立主动约束...基于M ind lin板理论、压电理论、粘弹性理论和理想流体方程,对充液圆柱壳主动约束阻尼结构在流固耦合条件下的建模进行了研究。利用拉格朗日方法得到结构的动力学方程,利用GHM方法描述粘弹性阻尼的本构关系,结合流体方程建立主动约束阻尼结构在流固耦合条件下的动力学方程。建立从压电材料的电压到流固耦合边界下的圆柱壳结构振动的频响函数,利用实验结果对理论计算加以验证,结果表明该建模方法是可行的。展开更多
基金supported by the National Natural Science Foundation of China(No.52079133)CRSRI Open Research Program(Program SN:CKWV2019746/KY)+1 种基金the project of Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(QTKS0034W23291)the Youth Innovation Promotion Association CAS.
文摘Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.
文摘基于M ind lin板理论、压电理论、粘弹性理论和理想流体方程,对充液圆柱壳主动约束阻尼结构在流固耦合条件下的建模进行了研究。利用拉格朗日方法得到结构的动力学方程,利用GHM方法描述粘弹性阻尼的本构关系,结合流体方程建立主动约束阻尼结构在流固耦合条件下的动力学方程。建立从压电材料的电压到流固耦合边界下的圆柱壳结构振动的频响函数,利用实验结果对理论计算加以验证,结果表明该建模方法是可行的。