The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the d...The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life.展开更多
This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It ...This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It balances the dataset using the Synthetic Minority Over-sampling Technique(SMOTE),effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks.The proposed LSTM model is trained on the enriched dataset,capturing the temporal dependencies essential for anomaly recognition.The model demonstrated a significant improvement in anomaly detection,with an accuracy of 84%.The results,detailed in the comprehensive classification and confusion matrices,showed the model’s proficiency in distinguishing between normal activities and falls.This study contributes to the advancement of smart home safety,presenting a robust framework for real-time anomaly monitoring.展开更多
The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Tel...The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Telemetry Transport(MQTT)protocol,which,while efficient in bandwidth consumption,lacks inherent security features,making it vulnerable to various cyber threats.This research addresses these challenges by presenting a secure,lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things(IoT)networks.The proposed solution builds upon the Dang-Scheme,a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it using Elliptic Curve Cryptography(ECC).This integration significantly improves device authentication,data confidentiality,and energy efficiency,achieving an 87.68%increase in data confidentiality and up to 77.04%energy savings during publish/subscribe communications in smart homes.The Middleware Broker System dynamically manages transaction keys and session IDs,offering robust defences against common cyber threats like impersonation and brute-force attacks.Penetration testing with tools such as Hydra and Nmap further validated the system’s security,demonstrating its potential to significantly improve the security and efficiency of IoT networks while underscoring the need for ongoing research to combat emerging threats.展开更多
This study constructs an integrated model of user experience in smart home applications(apps)to deeply explore the impact of cognitive dissonance on users’emotional responses,subsequent behaviors,and experiential out...This study constructs an integrated model of user experience in smart home applications(apps)to deeply explore the impact of cognitive dissonance on users’emotional responses,subsequent behaviors,and experiential outcomes.The research emphasizes the importance of addressing emotional management in the design and development of smart home apps.The findings indicate that emotional response plays a critical mediating role in the user experience of these apps,offering new insights for further optimization.By understanding users’emotional reactions and behavioral patterns under cognitive dissonance,developers can more effectively improve interface design and enhance the overall user experience.展开更多
A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cuttin...A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.展开更多
With the requirements of multimedia service increasing in people' s life, sensor modules such as microphone, camera are added in the smart home' s sensor network, and the acquisition and processing of a large amount...With the requirements of multimedia service increasing in people' s life, sensor modules such as microphone, camera are added in the smart home' s sensor network, and the acquisition and processing of a large amount of information media such as audio, image and video is becoming a significant characteristics of smart home. The paper focuses on solving the following technical problems: the building of Zigbee multimedia network, the Design and selection of multimedia sensor node. These provide the basic network platform and the core technical support for the building of smart home.展开更多
The enormous energy use of the building sector and the requirements for indoor living quality that aim to improve occupants' productivity and health, prioritize Smart Buildings as an emerging technology. The Heati...The enormous energy use of the building sector and the requirements for indoor living quality that aim to improve occupants' productivity and health, prioritize Smart Buildings as an emerging technology. The Heating, Ventilation and Air-Conditioning(HVAC) system is considered one of the most critical and essential parts in buildings since it consumes the largest amount of energy and is responsible for humans comfort. Due to the intermittent operation of HVAC systems, faults are more likely to occur, possibly increasing eventually building's energy consumption and/or downgrading indoor living quality. The complexity and large scale nature of HVAC systems complicate the diagnosis of faults in a centralized framework. This paper presents a distributed intelligent fault diagnosis algorithm for detecting and isolating multiple sensor faults in large-scale HVAC systems.Modeling the HVAC system as a network of interconnected subsystems allows the design of a set of distributed sensor fault diagnosis agents capable of isolating multiple sensor faults by applying a combinatorial decision logic and diagnostic reasoning. The performance of the proposed method is investigated with respect to robustness, fault detectability and scalability. Simulations are used to illustrate the effectiveness of the proposed method in the presence of multiple sensor faults applied to a 83-zone HVAC system and to evaluate the sensitivity of the method with respect to sensor noise variance.展开更多
The development and use of Internet of Things(IoT)devices have grown significantly in recent years.Advanced IoT device characteristics are mainly to blame for the wide range of applications that may now be achieved wi...The development and use of Internet of Things(IoT)devices have grown significantly in recent years.Advanced IoT device characteristics are mainly to blame for the wide range of applications that may now be achieved with IoT devices.Corporations have begun to embrace the IoT concept.Identifying true and suitable devices,security faults that might be used for bad reasons,and administration of such devices are only a few of the issues that IoT,a new concept in technological progress,provides.In some ways,IoT device traffic differs from regular device traffic.Devices with particular features can be classified into categories,irrespective of their function or performance.Ever-changing and complex environments,like a smart home,demand this classification scheme.A total of 41 IoT devices were employed in this investigation.To build a multiclass classification model,IoT devices contributed 13 network traffic parameters.To further preprocess the raw data received,preprocessing techniques like Normalization and Dataset Scaling were utilized.Feature engineering techniques can extract features from the text data.A total of 117,423 feature vectors are contained in the dataset after stratification,which are used to further improve the classification model.In this study,a variety of performance indicators were employed to show the performance of the logiboosted algorithms.Logi-XGB scored 80.2%accuracy following application of the logit-boosted algorithms to the dataset for classification,whereas Logi-GBC achieved 77.8%accuracy.Meanwhile,Logi-ABC attained 80.7%accuracy.Logi-CBC,on the other hand,received the highest Accuracy score of 85.6%.The accuracy of Logi-LGBM and Logi-HGBC was the same at 81.37%each.Our suggested Logi-CBC showed the highest accuracy on the dataset when compared to existing Logit-Boosted Algorithms used in earlier studies.展开更多
Smart home devices are vulnerable to a variety of attacks.The matter gets more complicated when a number of devices collaborate to launch a colluding attack(e.g.,Distributed-Denial-of-Service(DDoS))in a network(e.g.,S...Smart home devices are vulnerable to a variety of attacks.The matter gets more complicated when a number of devices collaborate to launch a colluding attack(e.g.,Distributed-Denial-of-Service(DDoS))in a network(e.g.,Smart home).To handle these attacks,most studies have hitherto proposed authentication protocols that cannot necessarily be implemented in devices,especially during Device-to-Device(D2D)interactions.Tapping into the potential of Ethereum blockchain and smart contracts,this work proposes a lightweight authentication mechanism that enables safe D2D interactions in a smart home.The Ethereum blockchain enables the implementation of a decentralized prototype as well as a peer-to-peer distributed ledger system.The work also uses a single server queuing system model and the authentication mechanism to curtail DDoS attacks by controlling the number of service requests in the system.The simulation was conducted twenty times,each with varying number of devices chosen at random(ranging from 1 to 30).Each requester device sends an arbitrary request with a unique resource requirement at a time.This is done to measure the system's consistency across a variety of device capabilities.The experimental results show that the proposed protocol not only prevents colluding attacks,but also outperforms the benchmark protocols in terms of computational cost,message processing,and response times.展开更多
Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structure...Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structures,as individuals quickly improve their way of life depending on current innovations.However,there is a shortage of energy,as the energy required is higher than that produced.Many new plans are being designed to meet the consumer’s energy requirements.In many regions,energy utilization in the housing area is 30%–40%.The growth of smart homes has raised the requirement for intelligence in applications such as asset management,energy-efficient automation,security,and healthcare monitoring to learn about residents’actions and forecast their future demands.To overcome the challenges of energy consumption optimization,in this study,we apply an energy management technique.Data fusion has recently attracted much energy efficiency in buildings,where numerous types of information are processed.The proposed research developed a data fusion model to predict energy consumption for accuracy and miss rate.The results of the proposed approach are compared with those of the previously published techniques and found that the prediction accuracy of the proposed method is 92%,which is higher than the previously published approaches.展开更多
The smart grid has enabled users to control their home energy more effectively and efficiently.A home energy management system(HEM)is a challenging task because this requires the most effective scheduling of intellige...The smart grid has enabled users to control their home energy more effectively and efficiently.A home energy management system(HEM)is a challenging task because this requires the most effective scheduling of intelligent home appliances to save energy.Here,we presented a meta-heuristic-based HEM system that integrates the Greywolf Algorithm(GWA)and Harmony Search Algorithms(HSA).Moreover,a fusion initiated on HSA and GWA operators is used to optimize energy intake.Furthermore,many knapsacks are being utilized to ensure that peak-hour load usage for electricity customers does not surpass a certain edge.Hybridization has proven beneficial in achieving numerous objectives simultaneously,decreasing the peak-to-average ratio and power prices.Widespread MATLAB simulations are cast-off to evaluate the routine of the anticipated method,Harmony GWA(HGWA).The simulations are for a multifamily housing complex outfitted with various cool gadgets.The simulation results indicate that GWA functions better regarding cost savings than HSA.In reputes of PAR,HSA is significantly more effective than GWA.The suggested method reduces costs for single and ten-house construction by up to 2200.3 PKR,as opposed to 503.4 in GWA,398.10 in HSA and 640.3 in HGWA.The suggested approach performed better than HSA and GWA in PAR reduction.For single-family homes in HGWA,GWA and HSA,the reduction in PAR is 45.79%,21.92%and 20.54%,respectively.The hybrid approach,however,performs better than the currently used nature-inspired techniques in terms of Cost and PAR.展开更多
The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of ...The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.展开更多
Energy demand will continue to rise as a result of predicted population growth. In this work, a user-friendly home energy monitoring system based on IoT is described, which is capable of collecting, analyzing, and dis...Energy demand will continue to rise as a result of predicted population growth. In this work, a user-friendly home energy monitoring system based on IoT is described, which is capable of collecting, analyzing, and displaying data. Users register their sensors and devices on the monitoring platform. PostgreSQL and Elasticsearch databases are used to store the resulting measurements. In a smart home, the wireless sensor ACS712 was used to monitor the flow of electricity (current and voltage) for a household device. The user can share data about electricity consumption and costs with a third party via the private IPFS (InterPlanetary File System) network. A third party can download all the energy consumption data for a device or many devices from the platform for 1 day, 3 months, 6 months, and 1 year. The studies on the development of energy-efficient technology for home devices benefit greatly from the gathered data. For security in the system, it is preferred to run Keyrock Idm, Wilma Pep Proxy, and Orion Context Broker in HTTPS mode, and MQTTS is used to retrieve sensor data. The experimental results showed that the energy monitoring system accurately records voltage, current, active power, and the total amount of power used and offers low-cost solutions to the users using household devices in a day.展开更多
Privacy preservation is a crucial issue for smart buildings where all kinds of messages, e.g., power usage data, control commands, events, alarms, etc. are transmitted to accomplish the management of power. Without ap...Privacy preservation is a crucial issue for smart buildings where all kinds of messages, e.g., power usage data, control commands, events, alarms, etc. are transmitted to accomplish the management of power. Without appropriate privacy protection schemes, electricity customers are faced with various privacy risks. Meanwhile, the natures of smart grids and smart buildings—such as having limited computation power of smart devices and constraints in communication network capabilities, while requiring being highly reliable—make privacy preservation a challenging task. In this paper, we propose a group key scheme to safeguard multicast privacy with the provisions of availability, fault-tolerance, and efficiency in the context of smart buildings as a part the smart grid. In particular, hybrid architecture accommodating both centralized and contributory modes is constructed in order to achieve both fault-tolerance and efficiency with only one set of group key installed. Key trees are sophisticatedly managed to reduce the number of exponentiation operations. In addition, an individual rekeying scheme is introduced for occasional joining and leaving of member smart meters. Experimental results, on a simulation platform, show that our scheme is able to provide significant performance gains over state-of-the-art methods while effectively preserving the participants’ privacy.展开更多
The use of sustainable technologies for buildings, with the goal of creating an environment for living and working that uses fewer resources and generates less waste, also aims to retrofit existing buildings to be mor...The use of sustainable technologies for buildings, with the goal of creating an environment for living and working that uses fewer resources and generates less waste, also aims to retrofit existing buildings to be more efficient in terms of energy and water. Many cities are following this way targeting both commercial and municipal buildings. These cities are called smart cities where all life processes and nerve centers of social life are read, in order to radically improve quality of life, opportunity, prosperity, social and economic development, thanks to the use of technology. This paper deals with the study of smart buildings within smart cities, namely the use in an integrated project of computer and telematics tools with automation organized systems and passive bioclimatic strategies in architecture, determining a socio-technical management of intelligent building. The article is the result of a research carded out within the framework of intelligent buildings in the last generation cities, such as those ones with zero emissions that are taking place in the Middle East countries (Dubai, Masdar, Tiajin, and Kochi). The topic deals with the issues of building automation as a form of technological intelligence and the study of those smart technologies integrated into the building envelope that improve its performances, making it more sustainable. The research methodology has provided a bibliographic retrieval on the state of the art and the latest technological trends in the building field, later has followed a theoretical and comparative approach of the examined technologies, which led to the development of reasoning on operation, performance and functional capabilities of a building that is both sustainable and home automation, to arrive at the final concept of sustainable intelligent building, able to combine the artificial intelligence, home automation, and technological devices of the architectural project to enhance the building energy performance. In conclusion, the proposed result is that of an integrated intelligent building in which artificial intelligence will become part of the shell-building in order to achieve high levels of energy efficiency and thus environmental sustainability.展开更多
Recent advances in information and communications technology(ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldw...Recent advances in information and communications technology(ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be"prosumers"on the grid(both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demand response requests by grid operators with energy needed to maintain smooth building operations.For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality(adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems.Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.展开更多
Energy management in smart homes is one of the most critical problems for the Quality of Life(QoL)and preserving energy resources.One of the relevant issues in this subject is environmental contamination,which threate...Energy management in smart homes is one of the most critical problems for the Quality of Life(QoL)and preserving energy resources.One of the relevant issues in this subject is environmental contamination,which threatens the world's future.Green computing-enabled Artificial Intelligence(Al)algorithms can provide impactful solutions to this topic.This research proposes using one of the Recurrent Neural Network(RNN)algorithms known as Long Short-Term Memory(LSTM)to comprehend how it is feasible to perform the cloud/fog/edge-enabled prediction of the building's energy.Four parameters of power electricity,power heating,power cooling,and total power in an office/home in cold-climate cities are considered as our features in the study.Based on the collected data,we evaluate the LSTM approach for forecasting parameters for the next year to predict energy consumption and online monitoring of the model's performance under various conditions.Towards implementing the Al predictive algorithm,several existing tools are studied.The results have been generated through simulations,and we find them promisingforfutureapplications.展开更多
This paper presents the design of a wireless building monitoring network implemented at the University of Nottingham's Creative Energy Homes test site.The network is installed in seven smart buildings with the aim...This paper presents the design of a wireless building monitoring network implemented at the University of Nottingham's Creative Energy Homes test site.The network is installed in seven smart buildings with the aim of holistically collecting energy data.Data will be used to inform a central control algorithm to optimise the energy flows between buildings,in turn promoting the smart cities concept.Sensors and meters measuring temperature,humidity,CO_2,heat energy,power,and stratified tank temperature are described.Furthermore,the communication protocols utilised are also discussed,which include wireless MBus and EnOcean.This paper also covers the methods used for ensuring the reliability of data signals and the system controls.展开更多
This work investigates the economic, social, and environmental impact of adopting different smart lighting architectures for home automation in two geographical and regulatory regions: Algiers, Algeria, and Stuttgart,...This work investigates the economic, social, and environmental impact of adopting different smart lighting architectures for home automation in two geographical and regulatory regions: Algiers, Algeria, and Stuttgart, Germany. Lighting consumes a considerable amount of energy, and devices for smart lighting solutions are among the most purchased smart home devices. As commercialized solutions come with variant features, we empirically evaluate through this study the impact of each one of the energy-related features and provide insights on those that have higher energy saving contribution. The study started by investigating the state-of-the-art of commercialized ICT-based light control solutions, which allowed the extraction of the energy-related features. Based on the outcomes of this study, we generated simulation scenarios and selected evaluations metrics to evaluate the impact of dimming, daylight harvesting, scheduling, and motion detection. The simulation study has been conducted using EnergyPlussimulation tool, which?enables fine-grained realistic evaluation. The results show that adopting smart lighting technologies have a payback period of few years and that the use of these technologies has positive economic and societal impacts, as well as on the environment by considerably reducing gas emissions. However, this positive contribution is highly sensitive to the geographical location, energy prices, and the occupancy profile.展开更多
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R333)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The concept of smart houses has grown in prominence in recent years.Major challenges linked to smart homes are identification theft,data safety,automated decision-making for IoT-based devices,and the security of the device itself.Current home automation systems try to address these issues but there is still an urgent need for a dependable and secure smart home solution that includes automatic decision-making systems and methodical features.This paper proposes a smart home system based on ensemble learning of random forest(RF)and convolutional neural networks(CNN)for programmed decision-making tasks,such as categorizing gadgets as“OFF”or“ON”based on their normal routine in homes.We have integrated emerging blockchain technology to provide secure,decentralized,and trustworthy authentication and recognition of IoT devices.Our system consists of a 5V relay circuit,various sensors,and a Raspberry Pi server and database for managing devices.We have also developed an Android app that communicates with the server interface through an HTTP web interface and an Apache server.The feasibility and efficacy of the proposed smart home automation system have been evaluated in both laboratory and real-time settings.It is essential to use inexpensive,scalable,and readily available components and technologies in smart home automation systems.Additionally,we must incorporate a comprehensive security and privacy-centric design that emphasizes risk assessments,such as cyberattacks,hardware security,and other cyber threats.The trial results support the proposed system and demonstrate its potential for use in everyday life.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R 343),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the Project Number“NBU-FFR-2024-1092-04”.
文摘This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It balances the dataset using the Synthetic Minority Over-sampling Technique(SMOTE),effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks.The proposed LSTM model is trained on the enriched dataset,capturing the temporal dependencies essential for anomaly recognition.The model demonstrated a significant improvement in anomaly detection,with an accuracy of 84%.The results,detailed in the comprehensive classification and confusion matrices,showed the model’s proficiency in distinguishing between normal activities and falls.This study contributes to the advancement of smart home safety,presenting a robust framework for real-time anomaly monitoring.
基金supported through Universiti Sains Malaysia(USM)and the Ministry of Higher Education Malaysia providing the research grant,Fundamental Research Grant Scheme(FRGS-Grant No.FRGS/1/2020/TK0/USM/02/1).
文摘The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Telemetry Transport(MQTT)protocol,which,while efficient in bandwidth consumption,lacks inherent security features,making it vulnerable to various cyber threats.This research addresses these challenges by presenting a secure,lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things(IoT)networks.The proposed solution builds upon the Dang-Scheme,a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it using Elliptic Curve Cryptography(ECC).This integration significantly improves device authentication,data confidentiality,and energy efficiency,achieving an 87.68%increase in data confidentiality and up to 77.04%energy savings during publish/subscribe communications in smart homes.The Middleware Broker System dynamically manages transaction keys and session IDs,offering robust defences against common cyber threats like impersonation and brute-force attacks.Penetration testing with tools such as Hydra and Nmap further validated the system’s security,demonstrating its potential to significantly improve the security and efficiency of IoT networks while underscoring the need for ongoing research to combat emerging threats.
文摘This study constructs an integrated model of user experience in smart home applications(apps)to deeply explore the impact of cognitive dissonance on users’emotional responses,subsequent behaviors,and experiential outcomes.The research emphasizes the importance of addressing emotional management in the design and development of smart home apps.The findings indicate that emotional response plays a critical mediating role in the user experience of these apps,offering new insights for further optimization.By understanding users’emotional reactions and behavioral patterns under cognitive dissonance,developers can more effectively improve interface design and enhance the overall user experience.
文摘A smart city incorporates infrastructure methods that are environmentally responsible,such as smart communications,smart grids,smart energy,and smart buildings.The city administration has prioritized the use of cutting-edge technology and informatics as the primary strategy for enhancing service quality,with energy resources taking precedence.To achieve optimal energy management in themultidimensional system of a city tribe,it is necessary not only to identify and study the vast majority of energy elements,but also to define their implicit interdependencies.This is because optimal energy management is required to reach this objective.The lighting index is an essential consideration when evaluating the comfort indicators.In order to realize the concept of a smart city,the primary objective of this research is to create a system for managing and monitoring the lighting index.It is possible to identify two distinct phaseswithin the intelligent system.Once data collection concludes,the monitoring system will be activated.In the second step,the operation of the control system is analyzed and its effect on the performance of the numerical model is determined.This evaluation is based on the proposed methodology.The optimized resultswere deemed satisfactory because they maintained the brightness index value(79%)while consuming less energy.The intelligent implementation system generated satisfactory outcomes,which were observed 1.75 times on average.
文摘With the requirements of multimedia service increasing in people' s life, sensor modules such as microphone, camera are added in the smart home' s sensor network, and the acquisition and processing of a large amount of information media such as audio, image and video is becoming a significant characteristics of smart home. The paper focuses on solving the following technical problems: the building of Zigbee multimedia network, the Design and selection of multimedia sensor node. These provide the basic network platform and the core technical support for the building of smart home.
基金supported by the European Union’s Horizon 2020 Research and Innovation Programme(739551)(KIOS CoE)。
文摘The enormous energy use of the building sector and the requirements for indoor living quality that aim to improve occupants' productivity and health, prioritize Smart Buildings as an emerging technology. The Heating, Ventilation and Air-Conditioning(HVAC) system is considered one of the most critical and essential parts in buildings since it consumes the largest amount of energy and is responsible for humans comfort. Due to the intermittent operation of HVAC systems, faults are more likely to occur, possibly increasing eventually building's energy consumption and/or downgrading indoor living quality. The complexity and large scale nature of HVAC systems complicate the diagnosis of faults in a centralized framework. This paper presents a distributed intelligent fault diagnosis algorithm for detecting and isolating multiple sensor faults in large-scale HVAC systems.Modeling the HVAC system as a network of interconnected subsystems allows the design of a set of distributed sensor fault diagnosis agents capable of isolating multiple sensor faults by applying a combinatorial decision logic and diagnostic reasoning. The performance of the proposed method is investigated with respect to robustness, fault detectability and scalability. Simulations are used to illustrate the effectiveness of the proposed method in the presence of multiple sensor faults applied to a 83-zone HVAC system and to evaluate the sensitivity of the method with respect to sensor noise variance.
文摘The development and use of Internet of Things(IoT)devices have grown significantly in recent years.Advanced IoT device characteristics are mainly to blame for the wide range of applications that may now be achieved with IoT devices.Corporations have begun to embrace the IoT concept.Identifying true and suitable devices,security faults that might be used for bad reasons,and administration of such devices are only a few of the issues that IoT,a new concept in technological progress,provides.In some ways,IoT device traffic differs from regular device traffic.Devices with particular features can be classified into categories,irrespective of their function or performance.Ever-changing and complex environments,like a smart home,demand this classification scheme.A total of 41 IoT devices were employed in this investigation.To build a multiclass classification model,IoT devices contributed 13 network traffic parameters.To further preprocess the raw data received,preprocessing techniques like Normalization and Dataset Scaling were utilized.Feature engineering techniques can extract features from the text data.A total of 117,423 feature vectors are contained in the dataset after stratification,which are used to further improve the classification model.In this study,a variety of performance indicators were employed to show the performance of the logiboosted algorithms.Logi-XGB scored 80.2%accuracy following application of the logit-boosted algorithms to the dataset for classification,whereas Logi-GBC achieved 77.8%accuracy.Meanwhile,Logi-ABC attained 80.7%accuracy.Logi-CBC,on the other hand,received the highest Accuracy score of 85.6%.The accuracy of Logi-LGBM and Logi-HGBC was the same at 81.37%each.Our suggested Logi-CBC showed the highest accuracy on the dataset when compared to existing Logit-Boosted Algorithms used in earlier studies.
文摘Smart home devices are vulnerable to a variety of attacks.The matter gets more complicated when a number of devices collaborate to launch a colluding attack(e.g.,Distributed-Denial-of-Service(DDoS))in a network(e.g.,Smart home).To handle these attacks,most studies have hitherto proposed authentication protocols that cannot necessarily be implemented in devices,especially during Device-to-Device(D2D)interactions.Tapping into the potential of Ethereum blockchain and smart contracts,this work proposes a lightweight authentication mechanism that enables safe D2D interactions in a smart home.The Ethereum blockchain enables the implementation of a decentralized prototype as well as a peer-to-peer distributed ledger system.The work also uses a single server queuing system model and the authentication mechanism to curtail DDoS attacks by controlling the number of service requests in the system.The simulation was conducted twenty times,each with varying number of devices chosen at random(ranging from 1 to 30).Each requester device sends an arbitrary request with a unique resource requirement at a time.This is done to measure the system's consistency across a variety of device capabilities.The experimental results show that the proposed protocol not only prevents colluding attacks,but also outperforms the benchmark protocols in terms of computational cost,message processing,and response times.
文摘Energy is essential to practically all exercises and is imperative for the development of personal satisfaction.So,valuable energy has been in great demand for many years,especially for using smart homes and structures,as individuals quickly improve their way of life depending on current innovations.However,there is a shortage of energy,as the energy required is higher than that produced.Many new plans are being designed to meet the consumer’s energy requirements.In many regions,energy utilization in the housing area is 30%–40%.The growth of smart homes has raised the requirement for intelligence in applications such as asset management,energy-efficient automation,security,and healthcare monitoring to learn about residents’actions and forecast their future demands.To overcome the challenges of energy consumption optimization,in this study,we apply an energy management technique.Data fusion has recently attracted much energy efficiency in buildings,where numerous types of information are processed.The proposed research developed a data fusion model to predict energy consumption for accuracy and miss rate.The results of the proposed approach are compared with those of the previously published techniques and found that the prediction accuracy of the proposed method is 92%,which is higher than the previously published approaches.
基金The authors gratefully acknowledge the Deanship of Scientific Research at Najran University in the Kingdom of Saudi Arabia for funding this work through the Research Groups funding program with the Grant Code Number(NU/RG/SERC/11/7).
文摘The smart grid has enabled users to control their home energy more effectively and efficiently.A home energy management system(HEM)is a challenging task because this requires the most effective scheduling of intelligent home appliances to save energy.Here,we presented a meta-heuristic-based HEM system that integrates the Greywolf Algorithm(GWA)and Harmony Search Algorithms(HSA).Moreover,a fusion initiated on HSA and GWA operators is used to optimize energy intake.Furthermore,many knapsacks are being utilized to ensure that peak-hour load usage for electricity customers does not surpass a certain edge.Hybridization has proven beneficial in achieving numerous objectives simultaneously,decreasing the peak-to-average ratio and power prices.Widespread MATLAB simulations are cast-off to evaluate the routine of the anticipated method,Harmony GWA(HGWA).The simulations are for a multifamily housing complex outfitted with various cool gadgets.The simulation results indicate that GWA functions better regarding cost savings than HSA.In reputes of PAR,HSA is significantly more effective than GWA.The suggested method reduces costs for single and ten-house construction by up to 2200.3 PKR,as opposed to 503.4 in GWA,398.10 in HSA and 640.3 in HGWA.The suggested approach performed better than HSA and GWA in PAR reduction.For single-family homes in HGWA,GWA and HSA,the reduction in PAR is 45.79%,21.92%and 20.54%,respectively.The hybrid approach,however,performs better than the currently used nature-inspired techniques in terms of Cost and PAR.
基金supported by“Key Technology Research on Operational Performance Improvement of the Green Building”(2020YFS0060)Key Project of Science and Technology Department of Sichuan Province+2 种基金supported by“Creative VR Teaching and Learning Research Based on‘PBL+’and Multidimensional Collaboration”(JG2021-721)“Reform in the Mode and Practice of Architecture Education with the Characteristics of Geology”(JG2021-672)Education Quality and Teaching Reform Project of Higher Education in Sichuan Province in 2021–2023.
文摘The construction of relevant standards for building carbon emission assessment in China has just started,and the quantitative analysis method and evaluation system are still imperfect,which hinders the development of low-carbon building design.Therefore,the use of intelligent energy management system is very necessary.The purpose of this paper is to explore the design optimization of low-carbon buildings based on intelligent energy management systems.Based on the proposed quantitative method of building carbon emission,this paper establishes the quota theoretical system of building carbon emission analysis,and develops the quota based carbon emission calculation software.Smart energy management system is a low-carbon energy-saving system based on the reference of large-scale building energy-saving system and combined with energy consumption.It provides a fast and effective calculation tool for the quantitative evaluation of carbon emission of construction projects,so as to realize the carbon emission control and optimization in the early stage of architectural design and construction.On this basis,the evaluation,analysis and calculation method of building structure based on carbon reduction target is proposed,combined with the carbon emission quota management standard proposed in this paper.Taking small high-rise residential buildings as an example,this paper compares and analyzes different building structural systems from the perspectives of structural performance,economy and carbon emission level.It provides a reference for the design and evaluation of low-carbon building structures.The smart energy management system collects user energy use parameters.It uses time period and time sequence to obtain a large amount of data for analysis and integration,which provides users with intuitive energy consumption data.Compared with the traditional architectural design method,the industrialized construction method can save 589.22 megajoules(MJ)per square meter.Based on 29270 megajoules(MJ)per ton of standard coal,the construction area of the case is about 8000 m2,and the energy saving of residential buildings is 161.04 tons of standard coal.This research is of great significance in reducing the carbon emission intensity of buildings.
文摘Energy demand will continue to rise as a result of predicted population growth. In this work, a user-friendly home energy monitoring system based on IoT is described, which is capable of collecting, analyzing, and displaying data. Users register their sensors and devices on the monitoring platform. PostgreSQL and Elasticsearch databases are used to store the resulting measurements. In a smart home, the wireless sensor ACS712 was used to monitor the flow of electricity (current and voltage) for a household device. The user can share data about electricity consumption and costs with a third party via the private IPFS (InterPlanetary File System) network. A third party can download all the energy consumption data for a device or many devices from the platform for 1 day, 3 months, 6 months, and 1 year. The studies on the development of energy-efficient technology for home devices benefit greatly from the gathered data. For security in the system, it is preferred to run Keyrock Idm, Wilma Pep Proxy, and Orion Context Broker in HTTPS mode, and MQTTS is used to retrieve sensor data. The experimental results showed that the energy monitoring system accurately records voltage, current, active power, and the total amount of power used and offers low-cost solutions to the users using household devices in a day.
文摘Privacy preservation is a crucial issue for smart buildings where all kinds of messages, e.g., power usage data, control commands, events, alarms, etc. are transmitted to accomplish the management of power. Without appropriate privacy protection schemes, electricity customers are faced with various privacy risks. Meanwhile, the natures of smart grids and smart buildings—such as having limited computation power of smart devices and constraints in communication network capabilities, while requiring being highly reliable—make privacy preservation a challenging task. In this paper, we propose a group key scheme to safeguard multicast privacy with the provisions of availability, fault-tolerance, and efficiency in the context of smart buildings as a part the smart grid. In particular, hybrid architecture accommodating both centralized and contributory modes is constructed in order to achieve both fault-tolerance and efficiency with only one set of group key installed. Key trees are sophisticatedly managed to reduce the number of exponentiation operations. In addition, an individual rekeying scheme is introduced for occasional joining and leaving of member smart meters. Experimental results, on a simulation platform, show that our scheme is able to provide significant performance gains over state-of-the-art methods while effectively preserving the participants’ privacy.
文摘The use of sustainable technologies for buildings, with the goal of creating an environment for living and working that uses fewer resources and generates less waste, also aims to retrofit existing buildings to be more efficient in terms of energy and water. Many cities are following this way targeting both commercial and municipal buildings. These cities are called smart cities where all life processes and nerve centers of social life are read, in order to radically improve quality of life, opportunity, prosperity, social and economic development, thanks to the use of technology. This paper deals with the study of smart buildings within smart cities, namely the use in an integrated project of computer and telematics tools with automation organized systems and passive bioclimatic strategies in architecture, determining a socio-technical management of intelligent building. The article is the result of a research carded out within the framework of intelligent buildings in the last generation cities, such as those ones with zero emissions that are taking place in the Middle East countries (Dubai, Masdar, Tiajin, and Kochi). The topic deals with the issues of building automation as a form of technological intelligence and the study of those smart technologies integrated into the building envelope that improve its performances, making it more sustainable. The research methodology has provided a bibliographic retrieval on the state of the art and the latest technological trends in the building field, later has followed a theoretical and comparative approach of the examined technologies, which led to the development of reasoning on operation, performance and functional capabilities of a building that is both sustainable and home automation, to arrive at the final concept of sustainable intelligent building, able to combine the artificial intelligence, home automation, and technological devices of the architectural project to enhance the building energy performance. In conclusion, the proposed result is that of an integrated intelligent building in which artificial intelligence will become part of the shell-building in order to achieve high levels of energy efficiency and thus environmental sustainability.
文摘Recent advances in information and communications technology(ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be"prosumers"on the grid(both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demand response requests by grid operators with energy needed to maintain smooth building operations.For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality(adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems.Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.
文摘Energy management in smart homes is one of the most critical problems for the Quality of Life(QoL)and preserving energy resources.One of the relevant issues in this subject is environmental contamination,which threatens the world's future.Green computing-enabled Artificial Intelligence(Al)algorithms can provide impactful solutions to this topic.This research proposes using one of the Recurrent Neural Network(RNN)algorithms known as Long Short-Term Memory(LSTM)to comprehend how it is feasible to perform the cloud/fog/edge-enabled prediction of the building's energy.Four parameters of power electricity,power heating,power cooling,and total power in an office/home in cold-climate cities are considered as our features in the study.Based on the collected data,we evaluate the LSTM approach for forecasting parameters for the next year to predict energy consumption and online monitoring of the model's performance under various conditions.Towards implementing the Al predictive algorithm,several existing tools are studied.The results have been generated through simulations,and we find them promisingforfutureapplications.
基金supported by the University of Nottingham’s Architecture,Energy&Environment research groupthe Energy Research Accelerator(ERA)the Energy Technologies Institute(ETI)
文摘This paper presents the design of a wireless building monitoring network implemented at the University of Nottingham's Creative Energy Homes test site.The network is installed in seven smart buildings with the aim of holistically collecting energy data.Data will be used to inform a central control algorithm to optimise the energy flows between buildings,in turn promoting the smart cities concept.Sensors and meters measuring temperature,humidity,CO_2,heat energy,power,and stratified tank temperature are described.Furthermore,the communication protocols utilised are also discussed,which include wireless MBus and EnOcean.This paper also covers the methods used for ensuring the reliability of data signals and the system controls.
文摘This work investigates the economic, social, and environmental impact of adopting different smart lighting architectures for home automation in two geographical and regulatory regions: Algiers, Algeria, and Stuttgart, Germany. Lighting consumes a considerable amount of energy, and devices for smart lighting solutions are among the most purchased smart home devices. As commercialized solutions come with variant features, we empirically evaluate through this study the impact of each one of the energy-related features and provide insights on those that have higher energy saving contribution. The study started by investigating the state-of-the-art of commercialized ICT-based light control solutions, which allowed the extraction of the energy-related features. Based on the outcomes of this study, we generated simulation scenarios and selected evaluations metrics to evaluate the impact of dimming, daylight harvesting, scheduling, and motion detection. The simulation study has been conducted using EnergyPlussimulation tool, which?enables fine-grained realistic evaluation. The results show that adopting smart lighting technologies have a payback period of few years and that the use of these technologies has positive economic and societal impacts, as well as on the environment by considerably reducing gas emissions. However, this positive contribution is highly sensitive to the geographical location, energy prices, and the occupancy profile.