The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilizati...The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilization of MANETs in real life seems limited due to the lack of protocols for the automatic creation and evolution of ad hoc networks. Recently, a novel P2P protocol named Wi-Fi Direct has been proposed and standardized by the Wi-Fi Alliance to facilitate nearby devices’ interconnection. Wi-Fi Direct provides high-performance direct communication among devices, includes different energy management mechanisms, and is now available in most Android mobile devices. However, the current implementation of Wi-Fi Direct on Android has several limitations, making the Wi-Fi Direct network only be a one-hop ad-hoc network. This paper aims to develop a new framework for multi-hop ad hoc networking using Wi-Fi Direct in Android smart devices. The framework includes a connection establishment protocol and a group management protocol. Simulations validate the proposed framework on the OMNeT++ simulator. We analyzed the framework by varying transmission range, number of hops, and buffer size. The results indicate that the framework provides an eventual 100% packet delivery for different transmission ranges and hop count values. The buffer size has enough space for all packets. However, as buffer size decreases, the packet delivery decreases proportionally.展开更多
Computation is spanning from PC to Mobile devices. The Mobile Ad hoc Networks (MANETs) are optimal choice to accommodate this growing trend but there is a problem, security is the core issue. MANETs rely on wireless l...Computation is spanning from PC to Mobile devices. The Mobile Ad hoc Networks (MANETs) are optimal choice to accommodate this growing trend but there is a problem, security is the core issue. MANETs rely on wireless links for communication. Wireless networks are considered more exposed to security attacks as compared to wired networks, especially;MANETs are the soft target due to vulnerable in nature. Lack of infrastructure, open peer to peer connectivity, shared wireless medium, dynamic topology and scalability are the key characteristics of MANETs which make them ideal for security attacks. In this paper, we shall discuss in detail, what does security mean, why MANETs are more susceptible to security attacks than wired networks, taxonomy of network attacks and layer wise analysis of network attacks. Finally, we shall propose solutions to meet the security challenges, according to our framed security criteria.展开更多
Smart, real-time, low-cost, and distributed ecosystem monitoring is essential for understanding and managing rapidly changing ecosystems. However, new techniques in the big data era have rarely been introduced into op...Smart, real-time, low-cost, and distributed ecosystem monitoring is essential for understanding and managing rapidly changing ecosystems. However, new techniques in the big data era have rarely been introduced into operational ecosystem monitoring, particularly for fragile ecosystems in remote areas.We introduce the Internet of Things(IoT) techniques to establish a prototype ecosystem monitoring system by developing innovative smart devices and using IoT technologies for ecosystem monitoring in isolated environments. The developed smart devices include four categories: large-scale and nonintrusive instruments to measure evapotranspiration and soil moisture, in situ observing systems for CO2 and d13 C associated with soil respiration, portable and distributed devices for monitoring vegetation variables, and Bi-CMOS cameras and pressure trigger sensors for terrestrial vertebrate monitoring. These new devices outperform conventional devices and are connected to each other via wireless communication networks. The breakthroughs in the ecosystem monitoring IoT include new data loggers and longdistance wireless sensor network technology that supports the rapid transmission of data from devices to wireless networks. The applicability of this ecosystem monitoring IoT is verified in three fragile ecosystems, including a karst rocky desertification area, the National Park for Amur Tigers, and the oasis-desert ecotone in China. By integrating these devices and technologies with an ecosystem monitoring information system, a seamless data acquisition, transmission, processing, and application IoT is created. The establishment of this ecosystem monitoring IoT will serve as a new paradigm for ecosystem monitoring and therefore provide a platform for ecosystem management and decision making in the era of big data.展开更多
文摘The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilization of MANETs in real life seems limited due to the lack of protocols for the automatic creation and evolution of ad hoc networks. Recently, a novel P2P protocol named Wi-Fi Direct has been proposed and standardized by the Wi-Fi Alliance to facilitate nearby devices’ interconnection. Wi-Fi Direct provides high-performance direct communication among devices, includes different energy management mechanisms, and is now available in most Android mobile devices. However, the current implementation of Wi-Fi Direct on Android has several limitations, making the Wi-Fi Direct network only be a one-hop ad-hoc network. This paper aims to develop a new framework for multi-hop ad hoc networking using Wi-Fi Direct in Android smart devices. The framework includes a connection establishment protocol and a group management protocol. Simulations validate the proposed framework on the OMNeT++ simulator. We analyzed the framework by varying transmission range, number of hops, and buffer size. The results indicate that the framework provides an eventual 100% packet delivery for different transmission ranges and hop count values. The buffer size has enough space for all packets. However, as buffer size decreases, the packet delivery decreases proportionally.
文摘Computation is spanning from PC to Mobile devices. The Mobile Ad hoc Networks (MANETs) are optimal choice to accommodate this growing trend but there is a problem, security is the core issue. MANETs rely on wireless links for communication. Wireless networks are considered more exposed to security attacks as compared to wired networks, especially;MANETs are the soft target due to vulnerable in nature. Lack of infrastructure, open peer to peer connectivity, shared wireless medium, dynamic topology and scalability are the key characteristics of MANETs which make them ideal for security attacks. In this paper, we shall discuss in detail, what does security mean, why MANETs are more susceptible to security attacks than wired networks, taxonomy of network attacks and layer wise analysis of network attacks. Finally, we shall propose solutions to meet the security challenges, according to our framed security criteria.
基金supported by the National Key Research & Development Program of China (2016YFC0500106)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20100104)the 13th Five-year Informatization Plan of the Chinese Academy of Sciences (XXH13505-06)
文摘Smart, real-time, low-cost, and distributed ecosystem monitoring is essential for understanding and managing rapidly changing ecosystems. However, new techniques in the big data era have rarely been introduced into operational ecosystem monitoring, particularly for fragile ecosystems in remote areas.We introduce the Internet of Things(IoT) techniques to establish a prototype ecosystem monitoring system by developing innovative smart devices and using IoT technologies for ecosystem monitoring in isolated environments. The developed smart devices include four categories: large-scale and nonintrusive instruments to measure evapotranspiration and soil moisture, in situ observing systems for CO2 and d13 C associated with soil respiration, portable and distributed devices for monitoring vegetation variables, and Bi-CMOS cameras and pressure trigger sensors for terrestrial vertebrate monitoring. These new devices outperform conventional devices and are connected to each other via wireless communication networks. The breakthroughs in the ecosystem monitoring IoT include new data loggers and longdistance wireless sensor network technology that supports the rapid transmission of data from devices to wireless networks. The applicability of this ecosystem monitoring IoT is verified in three fragile ecosystems, including a karst rocky desertification area, the National Park for Amur Tigers, and the oasis-desert ecotone in China. By integrating these devices and technologies with an ecosystem monitoring information system, a seamless data acquisition, transmission, processing, and application IoT is created. The establishment of this ecosystem monitoring IoT will serve as a new paradigm for ecosystem monitoring and therefore provide a platform for ecosystem management and decision making in the era of big data.