Inter-salt shale oil reservoirs located between two salt layers are always accompanied by high temperature and high salinity. However, the present commonly used water-soluble polymers in fracturing fluids su er from p...Inter-salt shale oil reservoirs located between two salt layers are always accompanied by high temperature and high salinity. However, the present commonly used water-soluble polymers in fracturing fluids su er from poor tolerance to high temperature and high salinity. Thermoviscosifying polymers(TVP) whose aqueous solution shows viscosity increase upon increasing temperature and salt concentration have received considerable attention recently, which is promising for utilization in fracturing fluids to overcome these problems. In this work, both the salt-induced viscosifying property and mechanism of a TVP solution were investigated and the performance of TVP used as fracturing fluid based on the conditions of the Jianghan inter-salt shale oil reservoir in China was evaluated. It is found that the salt-induced viscosifying property of the TVP solution decreases with temperature and shear rate, but increases with polymer concentration. The number of intermolecular hydrophobic domains increases with the salt concentration contributing to the strengthening of a 3D network structure, which results in an increase in viscosity. In addition, the TVP fracturing fluid formulated with saturated brine exhibits excellent temperature and shear resistance, sand-suspending performance, and gel-breaking performance. Its viscosity remains above50 m Pa s after being sheared for 1 h even at a high temperature of 140 °C and the sand-suspending stability can be maintained for more than 1 week at 100 °C. Furthermore, the fracturing fluid can be easily broken down within 12h using 0.2 wt%–0.3 wt% potassium persulfate without residue.展开更多
Gamma radiation has been shown particularly useful for the functionalization of surfaces with stimuli-responsive polymers. This method involves the formation of active sites (free radicals) onto the polymeric backbone...Gamma radiation has been shown particularly useful for the functionalization of surfaces with stimuli-responsive polymers. This method involves the formation of active sites (free radicals) onto the polymeric backbone as a result of the exposition to high-energy radiation, in which a proper microenvironment for the reaction among monomer and/or polymer and the active sites takes place, thus leading to propagation which forms side chain grafts. The modification of polymers using high-energy irradiation may be performed by the following methods: direct or simultaneous, pre-irradiation oxidative and pre-irradiation. The most frequent ones correspond to the pre-irradiation oxidative method and the direct one. Radiation-grafting has many advantages over conventional methods considering that it does not require catalyst nor additives to initiate the reaction, and in general, no changes on the mechanical properties with respect to the pristine polymeric matrix are observed. This chapter focused on the synthesis of smart polymers and coatings obtained by the use of gamma radiation. In addition, diverse applications of these materials in the biomedical field are also reported.展开更多
Aggregation-induced emission(AIE)luminogens are attractive dyes to probe poly-mer properties that depend on changes in chain mobility and free volume.When embedded in polymers the restriction of intramolecular motion(...Aggregation-induced emission(AIE)luminogens are attractive dyes to probe poly-mer properties that depend on changes in chain mobility and free volume.When embedded in polymers the restriction of intramolecular motion(RIM)can lead to their photoluminescence quantum yield(PLQY)strong enhancement if local microviscosity increases(lowering of chain mobility and free volume).Nonethe-less,measuring PLQY during stimuli,i.e.heat or mechanical stress,is technically challenging;thus,emission intensity is commonly used instead,assuming its direct correlation with the PLQY.Here,by usingfluorescence lifetime as an absolutefluorescence parameter,it is demonstrated that this assumption can be invalid in many commonly encountered conditions.To this aim,different poly-mers are loaded with tetraphenylenethylene(TPE)and characterized during the application of thermal and mechanical stress and physical aging.Under these con-ditions,polymer matrix transparency variation is observed,possibly due to local changes in refractive index and to the formation of microfractures.By combin-ing different characterization techniques,it is proved that scattering can affect the apparent emission intensity,while lifetime measurements can be used to ascertain whether the observed phenomenon is due to modifications of the photophysi-cal properties of AIE dyes(RIM effect)or to alterations in the matrix optical properties.展开更多
Smart polymers have enormous potential in various applications.In particular,smart polymeric drug delivery systems have been explored as“intelligent”delivery systems able to release,at the appropriate time and site ...Smart polymers have enormous potential in various applications.In particular,smart polymeric drug delivery systems have been explored as“intelligent”delivery systems able to release,at the appropriate time and site of action,entrapped drugs in response to specific physiological triggers.These polymers exhibit a non-linear response to a small stimulus leading to a macroscopic alteration in their structure/properties.The responses vary widely from swelling/contraction to disintegration.Synthesis of new polymers and crosslinkers with greater biocompatibility and better biodegradability would increase and enhance current applications.The most fascinating features of the smart polymers arise from their versatility and tunable sensitivity.The most significant weakness of all these external stimuli-sensitive polymers is slow response time.The versatility of polymer sources and their combinatorial synthesis make it possible to tune polymer sensitivity to a given stimulus within a narrow range.Development of smart polymer systems may lead to more accurate and programmable drug delivery.In this review,we discuss various mechanisms by which polymer systems are assembled in situ to form implanted devices for sustained release of therapeutic macromolecules,and we highlight various applications in the field of advanced drug delivery.展开更多
Smart polymeric and gel actuators change shape or size in response to stimuli like electricity,heat,or light.These smart polymeric-and gel-based actuators are compliant and well suited for development of soft mechatro...Smart polymeric and gel actuators change shape or size in response to stimuli like electricity,heat,or light.These smart polymeric-and gel-based actuators are compliant and well suited for development of soft mechatronic and robotic devices.This paper provides a thorough review of select smart polymeric and gel actuator materials where an automated and freeform fabrication process,like 3D printing,is exploited to create custom shaped monolithic devices.In particular,the advantages and limitations,examples of applications,manufacturing and fabrication techniques,and methods for actuator control are discussed.Finally,a rigorous comparison and analysis of some of the advantages and limitations,as well as manufacturing processes,for these materials,are presented.展开更多
Polymers are being used extensively in drug delivery due to their surface and bulk properties. They are being used in drug formulations and in drug delivery devices. These drug delivery devices may be in the form of i...Polymers are being used extensively in drug delivery due to their surface and bulk properties. They are being used in drug formulations and in drug delivery devices. These drug delivery devices may be in the form of implants for controlled drug delivery. Polymers used in colloidal drug carrier systems, consisting of small particles, show great advantage in drug delivery systems because of optimized drug loading and releasing property. Polymeric nano particulate systems are available in wide variety and have established chemistry. Non toxic, biodegradable and biocompatible polymers are available. Some nano particulate polymeric systems possess ability to cross blood brain barrier. They offer protection against chemical degradation. Smart polymers are responsive to atmospheric stimulus like change in temperature;pressure, pH etc. thus are extremely beneficial for targeted drug delivery. Some polymeric systems conjugated with antibodies/specific biomarkers help in detecting molecular targets specifically in cancers. Surface coating with thiolated PEG, Silica-PEG improves water solubility and photo stability. Surface modification of drug carriers e.g. attachment with PEG or dextran to the lipid bilayer increases their blood circulation time. Polymer drug conjugates such as Zoladex, Lupron Depot, On Caspar PEG intron are used in treatment of prostate cancer and lymphoblastic leukemia. Polymeric Drug Delivery systems are being utilized for controlled drug delivery assuring patient compliance.展开更多
Owing to the outstanding photophysical properties,organic luminescent materials featuring aggregation-induced emission(AIE)characteristics have attracted wide attention in various fields.Numerous researches focused on...Owing to the outstanding photophysical properties,organic luminescent materials featuring aggregation-induced emission(AIE)characteristics have attracted wide attention in various fields.Numerous researches focused on low-mass AIE luminogens,and relatively less attention has been paid on AIE polymers and the related applications,in spite of the fact that AIE polymers exhibit excellent advantages of processability,multifunctional integration and synergistic effects.In this review,we briefly summarize and discuss the superiorities of AIE polymers in preparation,properties and bio-applications,and the considerable progress in these aspects are introduced as well.Finally,the structure-property relationship,challenges and opportunities are also discussed.Hopefully,this review will be a trigger for smart AIE polymer research and further broaden their applications.展开更多
Silicone rubber films were modified by the consecutive grafting of 2-(diethylamino)ethyl methacrylate (DEAEMA) and N-vinylcaprolactam (NVCL) using direct method on two steps with gamma-rays. The effect of absorbed dos...Silicone rubber films were modified by the consecutive grafting of 2-(diethylamino)ethyl methacrylate (DEAEMA) and N-vinylcaprolactam (NVCL) using direct method on two steps with gamma-rays. The effect of absorbed dose and monomer concentration on grafting degree was determined. The grafted samples were verified by FTIR-ATR spectroscopy and swelling;thermal properties were analyzed by DSC and TGA. The stimuli-responsive behavior was studied by swelling and/or DSC. Thermo- and pH-sensitive films of (PP-g-DEAEMA)-g-NVCL presented a pH critical at 3.2 and LCST around 63.5℃.展开更多
By using redispersible polymer powder(RPP) and carbon fiber(CF) to adjust the flexibility and electrical properties of the smart aggregate, a new kind of smart aggregate with Z type structure was proposed. The stu...By using redispersible polymer powder(RPP) and carbon fiber(CF) to adjust the flexibility and electrical properties of the smart aggregate, a new kind of smart aggregate with Z type structure was proposed. The study shows that Z type aggregate is more sensitive to the feedback of external force than the prism aggregate in the same loading environment, and it indicates that Z type aggregate is more suitable for the research and application of concrete health monitoring. Although the incorporation of RPP would cause the compressive strength of the aggregates and the elastic modulus of hardened cement mortar to reduce slightly within the dosage of RPP by 2.25% because of the polymer film formed in the internal system, this would improve the deformability of the aggregates. In the early loading stage(in the first 60 seconds), the intelligent concrete specimens implanted with Z type smart aggregate do not show higher sensitivity as expected, although the resistance change rate changes a little bit more, the overall of it is still in balance. Adding RPP could improve the flexibility of smart aggregates exactly, and it plays an active role in prolonging the life of the smart aggregates. By implanting Z type aggregates the damage and failure of the concrete structure could be predicted accurately in this study. The results of this paper will help to promote further research and application of intelligent concrete.展开更多
Comprehensive Summary A disulfide-based poly(ether-b-amide)copolymer with rapid self-healing capability under moderate conditions was synthesized from 4,4’-dithiodibutyric acid(DTDBA),isophorondiamine(IPDA)and poly(t...Comprehensive Summary A disulfide-based poly(ether-b-amide)copolymer with rapid self-healing capability under moderate conditions was synthesized from 4,4’-dithiodibutyric acid(DTDBA),isophorondiamine(IPDA)and poly(tetramethylene oxide)(PTMO)based on a two-step method.The incorporation of IPDA with asymmetric structure and substantial steric hindrance not only effectively decreased the number of regular H-bonds,but also inhibited the crystallization of polyamide segments,imparting the synthesized poly(ether-b-amide)copolymer with an amorphous structural feature.Based on the coordination of segmental diffusion and recombination of disulfide bonds and hydrogen bonds,the scratches and damaged mechanical properties of PEBADS-I611 could be completely self-healed after healing at 40°C for only 11 min and 3 h,respectively.展开更多
基金financial support from State Energy Center for Shale Oil Research and Development(Grant No.G5800-17-ZS-KFNY008)
文摘Inter-salt shale oil reservoirs located between two salt layers are always accompanied by high temperature and high salinity. However, the present commonly used water-soluble polymers in fracturing fluids su er from poor tolerance to high temperature and high salinity. Thermoviscosifying polymers(TVP) whose aqueous solution shows viscosity increase upon increasing temperature and salt concentration have received considerable attention recently, which is promising for utilization in fracturing fluids to overcome these problems. In this work, both the salt-induced viscosifying property and mechanism of a TVP solution were investigated and the performance of TVP used as fracturing fluid based on the conditions of the Jianghan inter-salt shale oil reservoir in China was evaluated. It is found that the salt-induced viscosifying property of the TVP solution decreases with temperature and shear rate, but increases with polymer concentration. The number of intermolecular hydrophobic domains increases with the salt concentration contributing to the strengthening of a 3D network structure, which results in an increase in viscosity. In addition, the TVP fracturing fluid formulated with saturated brine exhibits excellent temperature and shear resistance, sand-suspending performance, and gel-breaking performance. Its viscosity remains above50 m Pa s after being sheared for 1 h even at a high temperature of 140 °C and the sand-suspending stability can be maintained for more than 1 week at 100 °C. Furthermore, the fracturing fluid can be easily broken down within 12h using 0.2 wt%–0.3 wt% potassium persulfate without residue.
基金H.I.Melendez-Ortiz is grateful to the program Cátedras-CONACyT(Mexico)This chapter was supported by DGAPA-UNAM Grant IN200714+1 种基金CONACYT-CNPq Project 174378(Mexico)CNPq project number 490200/2011-7(Brazil).
文摘Gamma radiation has been shown particularly useful for the functionalization of surfaces with stimuli-responsive polymers. This method involves the formation of active sites (free radicals) onto the polymeric backbone as a result of the exposition to high-energy radiation, in which a proper microenvironment for the reaction among monomer and/or polymer and the active sites takes place, thus leading to propagation which forms side chain grafts. The modification of polymers using high-energy irradiation may be performed by the following methods: direct or simultaneous, pre-irradiation oxidative and pre-irradiation. The most frequent ones correspond to the pre-irradiation oxidative method and the direct one. Radiation-grafting has many advantages over conventional methods considering that it does not require catalyst nor additives to initiate the reaction, and in general, no changes on the mechanical properties with respect to the pristine polymeric matrix are observed. This chapter focused on the synthesis of smart polymers and coatings obtained by the use of gamma radiation. In addition, diverse applications of these materials in the biomedical field are also reported.
基金Ministero dell’Universitàe della Ricerca,Grant/Award Number:20179BJNA2。
文摘Aggregation-induced emission(AIE)luminogens are attractive dyes to probe poly-mer properties that depend on changes in chain mobility and free volume.When embedded in polymers the restriction of intramolecular motion(RIM)can lead to their photoluminescence quantum yield(PLQY)strong enhancement if local microviscosity increases(lowering of chain mobility and free volume).Nonethe-less,measuring PLQY during stimuli,i.e.heat or mechanical stress,is technically challenging;thus,emission intensity is commonly used instead,assuming its direct correlation with the PLQY.Here,by usingfluorescence lifetime as an absolutefluorescence parameter,it is demonstrated that this assumption can be invalid in many commonly encountered conditions.To this aim,different poly-mers are loaded with tetraphenylenethylene(TPE)and characterized during the application of thermal and mechanical stress and physical aging.Under these con-ditions,polymer matrix transparency variation is observed,possibly due to local changes in refractive index and to the formation of microfractures.By combin-ing different characterization techniques,it is proved that scattering can affect the apparent emission intensity,while lifetime measurements can be used to ascertain whether the observed phenomenon is due to modifications of the photophysi-cal properties of AIE dyes(RIM effect)or to alterations in the matrix optical properties.
文摘Smart polymers have enormous potential in various applications.In particular,smart polymeric drug delivery systems have been explored as“intelligent”delivery systems able to release,at the appropriate time and site of action,entrapped drugs in response to specific physiological triggers.These polymers exhibit a non-linear response to a small stimulus leading to a macroscopic alteration in their structure/properties.The responses vary widely from swelling/contraction to disintegration.Synthesis of new polymers and crosslinkers with greater biocompatibility and better biodegradability would increase and enhance current applications.The most fascinating features of the smart polymers arise from their versatility and tunable sensitivity.The most significant weakness of all these external stimuli-sensitive polymers is slow response time.The versatility of polymer sources and their combinatorial synthesis make it possible to tune polymer sensitivity to a given stimulus within a narrow range.Development of smart polymer systems may lead to more accurate and programmable drug delivery.In this review,we discuss various mechanisms by which polymer systems are assembled in situ to form implanted devices for sustained release of therapeutic macromolecules,and we highlight various applications in the field of advanced drug delivery.
基金This work was supported by the National Science Foundation[1545857]。
文摘Smart polymeric and gel actuators change shape or size in response to stimuli like electricity,heat,or light.These smart polymeric-and gel-based actuators are compliant and well suited for development of soft mechatronic and robotic devices.This paper provides a thorough review of select smart polymeric and gel actuator materials where an automated and freeform fabrication process,like 3D printing,is exploited to create custom shaped monolithic devices.In particular,the advantages and limitations,examples of applications,manufacturing and fabrication techniques,and methods for actuator control are discussed.Finally,a rigorous comparison and analysis of some of the advantages and limitations,as well as manufacturing processes,for these materials,are presented.
文摘Polymers are being used extensively in drug delivery due to their surface and bulk properties. They are being used in drug formulations and in drug delivery devices. These drug delivery devices may be in the form of implants for controlled drug delivery. Polymers used in colloidal drug carrier systems, consisting of small particles, show great advantage in drug delivery systems because of optimized drug loading and releasing property. Polymeric nano particulate systems are available in wide variety and have established chemistry. Non toxic, biodegradable and biocompatible polymers are available. Some nano particulate polymeric systems possess ability to cross blood brain barrier. They offer protection against chemical degradation. Smart polymers are responsive to atmospheric stimulus like change in temperature;pressure, pH etc. thus are extremely beneficial for targeted drug delivery. Some polymeric systems conjugated with antibodies/specific biomarkers help in detecting molecular targets specifically in cancers. Surface coating with thiolated PEG, Silica-PEG improves water solubility and photo stability. Surface modification of drug carriers e.g. attachment with PEG or dextran to the lipid bilayer increases their blood circulation time. Polymer drug conjugates such as Zoladex, Lupron Depot, On Caspar PEG intron are used in treatment of prostate cancer and lymphoblastic leukemia. Polymeric Drug Delivery systems are being utilized for controlled drug delivery assuring patient compliance.
基金Natural Science Foundation of Guangdong Province,Grant/Award Number:2019B030301003National Natural Science Foundation of China,Grant/Award Number:21788102Innovation and Technology Commission of Hong Kong,Grant/Award Number:ITC-CNERC14S01。
文摘Owing to the outstanding photophysical properties,organic luminescent materials featuring aggregation-induced emission(AIE)characteristics have attracted wide attention in various fields.Numerous researches focused on low-mass AIE luminogens,and relatively less attention has been paid on AIE polymers and the related applications,in spite of the fact that AIE polymers exhibit excellent advantages of processability,multifunctional integration and synergistic effects.In this review,we briefly summarize and discuss the superiorities of AIE polymers in preparation,properties and bio-applications,and the considerable progress in these aspects are introduced as well.Finally,the structure-property relationship,challenges and opportunities are also discussed.Hopefully,this review will be a trigger for smart AIE polymer research and further broaden their applications.
文摘Silicone rubber films were modified by the consecutive grafting of 2-(diethylamino)ethyl methacrylate (DEAEMA) and N-vinylcaprolactam (NVCL) using direct method on two steps with gamma-rays. The effect of absorbed dose and monomer concentration on grafting degree was determined. The grafted samples were verified by FTIR-ATR spectroscopy and swelling;thermal properties were analyzed by DSC and TGA. The stimuli-responsive behavior was studied by swelling and/or DSC. Thermo- and pH-sensitive films of (PP-g-DEAEMA)-g-NVCL presented a pH critical at 3.2 and LCST around 63.5℃.
基金Funded by the Natural Science Foundation of Fujian Province(No.2016J01241)the National Natural Science Foundation of China(No.51608212)the Science&Technology Pillar Program of Fujian Provincial Education Department(No.JA14024)
文摘By using redispersible polymer powder(RPP) and carbon fiber(CF) to adjust the flexibility and electrical properties of the smart aggregate, a new kind of smart aggregate with Z type structure was proposed. The study shows that Z type aggregate is more sensitive to the feedback of external force than the prism aggregate in the same loading environment, and it indicates that Z type aggregate is more suitable for the research and application of concrete health monitoring. Although the incorporation of RPP would cause the compressive strength of the aggregates and the elastic modulus of hardened cement mortar to reduce slightly within the dosage of RPP by 2.25% because of the polymer film formed in the internal system, this would improve the deformability of the aggregates. In the early loading stage(in the first 60 seconds), the intelligent concrete specimens implanted with Z type smart aggregate do not show higher sensitivity as expected, although the resistance change rate changes a little bit more, the overall of it is still in balance. Adding RPP could improve the flexibility of smart aggregates exactly, and it plays an active role in prolonging the life of the smart aggregates. By implanting Z type aggregates the damage and failure of the concrete structure could be predicted accurately in this study. The results of this paper will help to promote further research and application of intelligent concrete.
基金financially supported by the National Key Program of China(No.2022-1400600).
文摘Comprehensive Summary A disulfide-based poly(ether-b-amide)copolymer with rapid self-healing capability under moderate conditions was synthesized from 4,4’-dithiodibutyric acid(DTDBA),isophorondiamine(IPDA)and poly(tetramethylene oxide)(PTMO)based on a two-step method.The incorporation of IPDA with asymmetric structure and substantial steric hindrance not only effectively decreased the number of regular H-bonds,but also inhibited the crystallization of polyamide segments,imparting the synthesized poly(ether-b-amide)copolymer with an amorphous structural feature.Based on the coordination of segmental diffusion and recombination of disulfide bonds and hydrogen bonds,the scratches and damaged mechanical properties of PEBADS-I611 could be completely self-healed after healing at 40°C for only 11 min and 3 h,respectively.