An innovative approach to increase structural survivability of concrete and maintain structural durability of concrete was developed in case of earthquakes and typhoons. This approach takes advantage of the superelast...An innovative approach to increase structural survivability of concrete and maintain structural durability of concrete was developed in case of earthquakes and typhoons. This approach takes advantage of the superelastic effect of shape memory alloy(SMA) and the cohering characteristic of repairing adhesive. These SMA wires and brittle fibers containing adhesives were embedded into concrete beams during concrete casting to form smart reinforced concrete beams. The self-repairing capacity of smart concrete beams was investigated by three-point bending tests. The experimental results show that SMA wires add self-restoration capacity,the concrete beams recover almost completely after incurring an extremely large deflection and the cracks are closed almost completely by the recovery forces of SMA wires. The number or areas of SMA wires has no influence on the tendency of deformation during loading and the tendency of reversion by the superelasticity. The adhesives released from the broken-open fibers fill voids and cracks. The repaired damage enables continued function and prevents further degradation.展开更多
The discipline of damage tolerance assessment has experienced significant advancements due to the emergence of smart materials and self-repairable structures.This review offers a comprehensive look into both tradition...The discipline of damage tolerance assessment has experienced significant advancements due to the emergence of smart materials and self-repairable structures.This review offers a comprehensive look into both traditional and innovative methodologies employed in damage tolerance assessment.After a detailed exploration of damage tolerance concepts and their historical progression,the review juxtaposes the proven techniques of damage assessment with the cutting-edge innovations brought about by smart materials and self-repairable structures.The subsequent sections delve into the synergistic integration of smart materials with self-repairable structures,marking a pivotal stride in damage tolerance by establishing an autonomous system for immediate damage identification and self-repair.This holistic approach broadens the applicability of these technologies across diverse sectors yet brings forth unique challenges demanding further innovation and research.Additionally,the review examines future prospects that combine advanced manufacturing processes with data-centric methodologies,amplifying the capabilities of these‘intelligent’structures.The review culminates by highlighting the transformative potential of this union between smart materials and self-repairable structures,promoting a sustainable and efficient engineering paradigm.展开更多
Dear Editor,This letter presents a novel and efficient adversarial robustness verification method for tree-based smart grid dynamic security assessment(DSA).Based on tree algorithms technique,the data-driven smart gri...Dear Editor,This letter presents a novel and efficient adversarial robustness verification method for tree-based smart grid dynamic security assessment(DSA).Based on tree algorithms technique,the data-driven smart grid DSA has received significant research interests in recent years.展开更多
A significant fraction of the world’s population is living in cities. With the rapid development ofinformation and computing technologies (ICT), cities may be made smarter by embedding ICT intotheir infrastructure. B...A significant fraction of the world’s population is living in cities. With the rapid development ofinformation and computing technologies (ICT), cities may be made smarter by embedding ICT intotheir infrastructure. By smarter, we mean that the city operation will be more efficient, cost-effective,energy-saving, be more connected, more secure, and more environmentally friendly. As such, a smartcity is typically defined as a city that has a strong integration with ICT in all its components, includingits physical components, social components, and business components [1,2].展开更多
Guest Editors Prof.Andrea Massa Prof.Shi-Wen Yang University of Trento University of Electronic Science and Technology of China andrea.massa@unitn.it swnyang@uestc.edu.cn Prof.Yu-Mao Wu Fudan University yumaowu@fudan....Guest Editors Prof.Andrea Massa Prof.Shi-Wen Yang University of Trento University of Electronic Science and Technology of China andrea.massa@unitn.it swnyang@uestc.edu.cn Prof.Yu-Mao Wu Fudan University yumaowu@fudan.edu.cn,Next-generation communication systems will play a pivotal role in supporting an intensely immersive and interconnected global landscape.In this dynamic realm,the exchange of enormous volumes of data between physical entities,individuals,and their digital devices has become the norm.The Smart Electromagnetic Environment(SEME)is a rapidly evolving paradigm aiming at revolutionizing the design of next-generation mobile communication systems.It is founded on the main idea that the environment is no more an obstacle to wireless signals,but instead enables controlling and tailoring the propagation of electromagnetic waves.展开更多
This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate ...This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate challenges, the research analyzed how smart city frameworks, aligned with climate neutrality objectives, leverage geospatial technologies for urban planning and climate action. The study included case studies from three leading European cities, extracting lessons and best practices in implementing Climate City Contracts across sectors like energy, transport, and waste management. These insights highlighted the essential role of EU and national authorities in providing technical, regulatory, and financial support. Additionally, the paper presented the application of a WEBGIS platform in Limassol Municipality, Cyprus, demonstrating citizen engagement and acceptance of the proposed geospatial framework. Concluding with recommendations for future research, the study contributed significant insights into the advancement of urban sustainability and the effectiveness of geospatial technologies in smart city initiatives for combating climate change.展开更多
基金Project(50538020) supported by the National Natural Science Foundation of ChinaProject(20070421050) supported by China Postdoctoral Science Foundation
文摘An innovative approach to increase structural survivability of concrete and maintain structural durability of concrete was developed in case of earthquakes and typhoons. This approach takes advantage of the superelastic effect of shape memory alloy(SMA) and the cohering characteristic of repairing adhesive. These SMA wires and brittle fibers containing adhesives were embedded into concrete beams during concrete casting to form smart reinforced concrete beams. The self-repairing capacity of smart concrete beams was investigated by three-point bending tests. The experimental results show that SMA wires add self-restoration capacity,the concrete beams recover almost completely after incurring an extremely large deflection and the cracks are closed almost completely by the recovery forces of SMA wires. The number or areas of SMA wires has no influence on the tendency of deformation during loading and the tendency of reversion by the superelasticity. The adhesives released from the broken-open fibers fill voids and cracks. The repaired damage enables continued function and prevents further degradation.
文摘The discipline of damage tolerance assessment has experienced significant advancements due to the emergence of smart materials and self-repairable structures.This review offers a comprehensive look into both traditional and innovative methodologies employed in damage tolerance assessment.After a detailed exploration of damage tolerance concepts and their historical progression,the review juxtaposes the proven techniques of damage assessment with the cutting-edge innovations brought about by smart materials and self-repairable structures.The subsequent sections delve into the synergistic integration of smart materials with self-repairable structures,marking a pivotal stride in damage tolerance by establishing an autonomous system for immediate damage identification and self-repair.This holistic approach broadens the applicability of these technologies across diverse sectors yet brings forth unique challenges demanding further innovation and research.Additionally,the review examines future prospects that combine advanced manufacturing processes with data-centric methodologies,amplifying the capabilities of these‘intelligent’structures.The review culminates by highlighting the transformative potential of this union between smart materials and self-repairable structures,promoting a sustainable and efficient engineering paradigm.
基金supported in part by the Internal Talent Award with Wallenberg-NTU Presidential Postdoctoral Fellowship 2022the National Research Foundation,Singapore and DSO National Laboratories under the AI Singapore Program(AISG2-RP-2020-019)+1 种基金the Joint SDU-NTU Centre for AI Research(C-FAIR),the RIE 2020 Advanced Manufacturing and Engineering(AME)Programmatic Fund,Singapore(A20G8b0102)NOE Tier 1 Projects(RG59/22&RT9/22)。
文摘Dear Editor,This letter presents a novel and efficient adversarial robustness verification method for tree-based smart grid dynamic security assessment(DSA).Based on tree algorithms technique,the data-driven smart grid DSA has received significant research interests in recent years.
文摘A significant fraction of the world’s population is living in cities. With the rapid development ofinformation and computing technologies (ICT), cities may be made smarter by embedding ICT intotheir infrastructure. By smarter, we mean that the city operation will be more efficient, cost-effective,energy-saving, be more connected, more secure, and more environmentally friendly. As such, a smartcity is typically defined as a city that has a strong integration with ICT in all its components, includingits physical components, social components, and business components [1,2].
文摘Guest Editors Prof.Andrea Massa Prof.Shi-Wen Yang University of Trento University of Electronic Science and Technology of China andrea.massa@unitn.it swnyang@uestc.edu.cn Prof.Yu-Mao Wu Fudan University yumaowu@fudan.edu.cn,Next-generation communication systems will play a pivotal role in supporting an intensely immersive and interconnected global landscape.In this dynamic realm,the exchange of enormous volumes of data between physical entities,individuals,and their digital devices has become the norm.The Smart Electromagnetic Environment(SEME)is a rapidly evolving paradigm aiming at revolutionizing the design of next-generation mobile communication systems.It is founded on the main idea that the environment is no more an obstacle to wireless signals,but instead enables controlling and tailoring the propagation of electromagnetic waves.
文摘This study investigated the integration of geospatial technologies within smart city frameworks to achieve the European Union’s climate neutrality goals by 2050. Focusing on rapid urbanization and escalating climate challenges, the research analyzed how smart city frameworks, aligned with climate neutrality objectives, leverage geospatial technologies for urban planning and climate action. The study included case studies from three leading European cities, extracting lessons and best practices in implementing Climate City Contracts across sectors like energy, transport, and waste management. These insights highlighted the essential role of EU and national authorities in providing technical, regulatory, and financial support. Additionally, the paper presented the application of a WEBGIS platform in Limassol Municipality, Cyprus, demonstrating citizen engagement and acceptance of the proposed geospatial framework. Concluding with recommendations for future research, the study contributed significant insights into the advancement of urban sustainability and the effectiveness of geospatial technologies in smart city initiatives for combating climate change.