The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
In high-level nuclear waste(HLW)repositories,concrete and compacted bentonite are designed to be employed as buffer materials,which may raise a problem of interactions between concrete and bentonite.These interactions...In high-level nuclear waste(HLW)repositories,concrete and compacted bentonite are designed to be employed as buffer materials,which may raise a problem of interactions between concrete and bentonite.These interactions would lead to mineralogy transformation and buffer performance decay of bentonite under the near field environment conditions in a repository.A small-scale experimental setup was established to simulate the concrete-bentonite-site water interaction system from a potential nuclear waste repository in China.Three types of mortars were prepared to correspond to the concrete at different degradation states.The results permit the determination of the following:(1)The macroproperties of Gaomiaozi(GMZ)bentonite(e.g.swelling pressure,permeability,the final dry density,and water content of reacted samples);(2)The composition evolution of fluids from the synthetic site water-concrete-bentonite interaction systems;(3)The sample characterization including Fourier transform infrared spectroscopy(FTIR)and X-ray powder diffraction(XRD).Under the infiltration of the synthesis Beishan site water(BSW),the swelling pressure of bentonite decreases slowly with time after reaching its second swelling peak.The flux decreases with time during the infiltrations,and it tends to be stable after more than 120 d.Due to the cation exchange reactions in the BSW-concrete-bentonite systems,the divalent cations(Ca and Mg)were consumed,and the monovalent cations(Na and K)were released.The dissolution of minerals in the bentonite such as albite causes Si increasing in the pore water.It was concluded that the hydro-mechanical property degradation of bentonite takes place when it comes into contact with concrete mortar,even under low-pH groundwater conditions.The soil dispersion,the uneven water content,and the uneven dry density in bentonite samples may partly contribute to the swelling decay of bentonite.Therefore,the direct contact with concrete has an obvious effect on the performance of bentonite.展开更多
Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything...Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security.展开更多
Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more qual...Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand.The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization,minimize energy costs without affecting production,and minimize environmental effects.Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings,which necessitates energy optimization and increased user comfort.To address the issue of energy management,many researchers have developed various frameworks;while the objective of each framework was to sustain a balance between user comfort and energy consumption,this problem hasn’t been fully solved because of how difficult it is to solve it.An inclusive and Intelligent Energy Management System(IEMS)aims to provide overall energy efficiency regarding increased power generation,increase flexibility,increase renewable generation systems,improve energy consumption,reduce carbon dioxide emissions,improve stability,and reduce energy costs.Machine Learning(ML)is an emerging approach that may be beneficial to predict energy efficiency in a better way with the assistance of the Internet of Energy(IoE)network.The IoE network is playing a vital role in the energy sector for collecting effective data and usage,resulting in smart resource management.In this research work,an IEMS is proposed for Smart Cities(SC)using the ML technique to better resolve the energy management problem.The proposed system minimized the energy consumption with its intelligent nature and provided better outcomes than the previous approaches in terms of 92.11% accuracy,and 7.89% miss-rate.展开更多
The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthca...The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.展开更多
This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’checkout counters.This is achieved by integ...This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’checkout counters.This is achieved by integrating a novel AI algorithm,called Improved Laser Simulator Logic(ILSL)into the RFID system.The enhanced RFID system was able to improve the accuracy of item identification,reduce noise interference,and streamline the overall checkout process.The potential of the systemfor noise detection and elimination was initially investigated through a simulation study usingMATLAB and ILSL algorithm.Subsequently,it was deployed in a small-scale environment to validate its real-world performance.Results show that RFID with the proposed new algorithm ILSL and AI basket is capable of accurately detecting the related itemswhile eliminating noise originating fromunrelated objects,achieving an accuracy rate of 88%.展开更多
Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally ...Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally been low, and there is an urgent need to improve the application efficiency, resilience and sustainability of smart energy monitoring and management system. Digital twin technology provides a data-centric solution to improve smart energy monitoring and management system, bringing an opportunity to transform passive infrastructure assets into data-centric systems. This paper expounds on the concept and key technologies of digital twin, and designs a smart energy monitoring and management system based on digital twin technology, which has dual significance for promoting the development of smart energy field and promoting the application of digital twin.展开更多
This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa re...This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. .展开更多
Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerabl...Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.展开更多
In the groundbreaking study “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems,” authored by Zaki Ali Bayashot, the transformative role of artificial intelligence (AI) in urban development is metic...In the groundbreaking study “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems,” authored by Zaki Ali Bayashot, the transformative role of artificial intelligence (AI) in urban development is meticulously examined. This comprehensive research delineates the multifaceted ways in which AI-powered mobile applications can significantly enhance the efficiency, sustainability, and livability of urban environments, marking a pivotal step towards the realization of smart cities globally. Bayashot meticulously outlines the critical areas where AI-powered apps offer unprecedented advantages, including urban mobility, public safety, energy management, and environmental monitoring. By leveraging AI’s capabilities, these applications not only streamline city operations but also foster a more sustainable interaction between city dwellers and their environment. The paper emphasizes the importance of data-driven decision-making in urban planning, showcasing how AI analytics can predict and mitigate traffic congestion, optimize energy consumption, and enhance emergency response strategies. The author also explores the social implications of AI in urban settings, highlighting the potential for these technologies to bridge the gap between government entities and citizens. Through engaging case studies, Bayashot demonstrates how participatory governance models, enabled by AI apps, can promote transparency, accountability, and citizen engagement in urban management. A significant contribution of this research is its focus on the challenges and opportunities presented by the integration of AI into smart city ecosystems. Bayashot discusses the technical, ethical, and privacy concerns associated with AI applications, advocating for a balanced approach that ensures technological advancements do not come at the expense of civil liberties. The study calls for robust regulatory frameworks to govern the use of AI in public spaces, emphasizing the need for ethical AI practices that respect privacy and promote inclusivity. Furthermore, Bayashot’s research underscores the necessity of cross-disciplinary collaboration in the development and implementation of AI technologies in urban contexts. By bringing together experts from information technology, urban planning, environmental science, and social sciences, the author argues for a holistic approach to smart city development. This interdisciplinary strategy ensures that AI applications are not only technologically sound but also socially and environmentally responsible. The paper concludes with a visionary outlook on the future of smart cities, posited on the seamless integration of AI technologies. Bayashot envisions a world where AI-powered mobile apps not only facilitate smoother urban operations but also empower citizens to actively participate in the shaping of their urban environments. This research serves as a critical call to action for policymakers, technologists, and urban planners to embrace AI as a tool for creating more sustainable, efficient, and inclusive cities. By presenting a detailed analysis of the current state of AI in urban development, coupled with practical insights and forward-looking recommendations, “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems” stands as a seminal work that is poised to inspire and guide the evolution of urban landscapes worldwide. Its comprehensive exploration of the subject matter, combined with its impactful conclusions, make it a must-read for anyone involved in the field of smart city development, AI technology, or urban policy-making.展开更多
The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in re...The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.展开更多
With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges su...With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges such as slow updates,usability issues,and limited installation methods.These challenges hinder the adoption and practicality of these tools.This paper examines smart contract vulnerability detection tools from 2016 to 2023,sourced from the Web of Science(WOS)and Google Scholar.By systematically collecting,screening,and synthesizing relevant research,38 open-source tools that provide installation methods were selected for further investigation.From a developer’s perspective,this paper offers a comprehensive survey of these 38 open-source tools,discussing their operating principles,installation methods,environmental dependencies,update frequencies,and installation challenges.Based on this,we propose an Ethereum smart contract vulnerability detection framework.This framework enables developers to easily utilize various detection tools and accurately analyze contract security issues.To validate the framework’s stability,over 1700 h of testing were conducted.Additionally,a comprehensive performance test was performed on the mainstream detection tools integrated within the framework,assessing their hardware requirements and vulnerability detection coverage.Experimental results indicate that the Slither tool demonstrates satisfactory performance in terms of system resource consumption and vulnerability detection coverage.This study represents the first performance evaluation of testing tools in this domain,providing significant reference value.展开更多
Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns...Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns are recognized as ideal sites for pure hydrogen storage.Evaluation and optimization of site selection for hydrogen storage facilities in salt caverns have become significant issues.In this article,the software CiteSpace is used to analyze and filter hot topics in published research.Based on a detailed classification and analysis,a“four‐factor”model for the site selection of salt cavern hydrogen storage is proposed,encompassing the dynamic demands of hydrogen energy,geological,hydrological,and ground factors of salt mines.Subsequently,20 basic indicators for comprehensive suitability grading of the target site were screened using the analytic hierarchy process and expert survey methods were adopted,which provided a preliminary site selection system for salt cavern hydrogen storage.Ultimately,the developed system was applied for the evaluation of salt cavern hydrogen storage sites in the salt mines of Pingdingshan City,Henan Province,thereby confirming its rationality and effectiveness.This research provides a feasible method and theoretical basis for the site selection of UHS in salt caverns in China.展开更多
The fund budget of multipurpose transit smart card systems is studied by stochastic programming to assign limited funds to different applications reasonably. Under the constraints of a gross fund, models of chance-con...The fund budget of multipurpose transit smart card systems is studied by stochastic programming to assign limited funds to different applications reasonably. Under the constraints of a gross fund, models of chance-constrained and dependentchance for the fund budget of multipurpose transit smart card systems are established with application scale and social demand as random variables, respectively aiming to maximize earnings and satisfy the service requirements the furthest; and the genetic algorithm based on stochastic simulation is adopted for model solution. The calculation results show that the fund budget differs greatly with different system objectives which can cause the systems to have distinct expansibilities, and the application scales of some applications may not satisfy user demands with limited funds. The analysis results indicate that the forecast of application scales and application future demands should be done first, and then the system objective is determined according to the system mission, which can help reduce the risks of fund budgets.展开更多
Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of ...Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of the body during internal or external bleeding. Access to clinical care for wounded military personnel injured on the battlefield is limited and has long delays compared to patients in peacetime. Most of the deaths of wounded military personnel on the battlefield occur within the first hour after being wounded. The most common causes are delay in providing medical care, loss of time for diagnosis, delay in stabilization of pain shock and large blood loss. Some help in overcoming these problems is provided by the data in the individual capsule, which each soldier of the modern army possesses;however, data in an individual capsule is not sufficient to provide emergency medical care in field and hospital conditions. This paper considers a project for development of a smart real-time monitoring wearable system for blood loss and level of shock stress in wounded persons on the battlefield, which provides medical staff in field and hospital conditions with the necessary information to give timely medical care. Although the hospital will require additional information, the basic information about the victims will already be known before he enters the hospital. It is important to emphasize that the key term in this approach is monitoring. It is tracking, and not a one-time measurement of indicators, that is crucial in a valid definition of bleeding.展开更多
Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capabl...Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. In this work, we develop a MATLAB code to examine the effect of the smart grid applications in improving the reliability of the power distribution networks via Monte Carlo Simulation approach. The system used in this paper is the IEEE 34 test feeder. The objective is to measure the installations of the Automatic Reclosers (ARs) as well as the Distributed Generators (DGs) on the reliability indices, SAIDI, SAIFI, CAIDI and EUE, and make comparisons with results from a previous study done by the authors using another approach. The MATLAB code should provide close results to the output of the previous research to verify its effectiveness.展开更多
State-of-the-art technologies such as the Internet of Things(IoT),cloud computing(CC),big data analytics(BDA),and artificial intelligence(AI)have greatly stimulated the development of smart manufacturing.An important ...State-of-the-art technologies such as the Internet of Things(IoT),cloud computing(CC),big data analytics(BDA),and artificial intelligence(AI)have greatly stimulated the development of smart manufacturing.An important prerequisite for smart manufacturing is cyber-physical integration,which is increasingly being embraced by manufacturers.As the preferred means of such integration,cyber-physical systems(CPS)and digital twins(DTs)have gained extensive attention from researchers and practitioners in industry.With feedback loops in which physical processes affect cyber parts and vice versa,CPS and DTs can endow manufacturing systems with greater efficiency,resilience,and intelligence.CPS and DTs share the same essential concepts of an intensive cyber-physical connection,real-time interaction,organization integration,and in-depth collaboration.However,CPS and DTs are not identical from many perspectives,including their origin,development,engineering practices,cyber-physical mapping,and core elements.In order to highlight the differences and correlation between them,this paper reviews and analyzes CPS and DTs from multiple perspectives.展开更多
The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wid...The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, hut benchmarking would give greater confidence. Technical challenges confrontingprocess systems engineers in developing enabling tools and techniques are discussed regarding flexibilityand uncertainty, responsiveness and agility, robustness and security, the prediction of mixture propertiesand function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to driveagility will require tackling new challenges, such as how to ensure the consistency and confidentiality ofdata through long and complex supply chains. Modeling challenges also exist, and involve ensuring that allkey aspects are properly modeled, particularly where health, safety, and environmental concerns requireaccurate predictions of small but critical amounts at specific locations. Environmental concerns will requireus to keep a closer track on all molecular species so that they are optimally used to create sustainablesolutions. Disruptive business models may result, particularly from new personalized products, but that isdifficult to predict.展开更多
A smart medical service system architecture is proposed in this paper to increase medical resource utilization and improve the efficiency of the medical diagnosis process for complex business scenarios in the Medical ...A smart medical service system architecture is proposed in this paper to increase medical resource utilization and improve the efficiency of the medical diagnosis process for complex business scenarios in the Medical Internet of Things(MIoT)environment.The resource representation model theory,multi-terminal aggregation algorithm,and the resource discovery algorithm based on latent factor model are also studied.A smart medical service system within the IoT environment is then developed,based on the open source project.Experimental results using real-world datasets illustrate that the proposed smart medical service system architecture can promote the intelligent and efficient management of medical resources to an extent,and assists in the develop towards digitization,intelligence,and precision in the field of medicine.展开更多
This work proposes a new design and architecture of a flexible biaxial solar tracker. A new approach was adopted with the use of a two separated cards, the smart and power card in a scalable concept. This module allow...This work proposes a new design and architecture of a flexible biaxial solar tracker. A new approach was adopted with the use of a two separated cards, the smart and power card in a scalable concept. This module allows a more saving of energy in comparison with the fixed systems for PV (photovoltaic) application and allows hire performances for CSP (concentrated solar power) systems. It provides a significant added value for higher power applications in comparison with the existing system. The developed sun tracking system is autonomous, flexible, scalable and low cost system.展开更多
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
基金supported by the National Natural Science Foundation of China(Grant No.42125701)the Innovation Program of Shanghai Municipal Education Commission(Grant No.2023ZKZD26)+2 种基金Fund of the Shanghai Science and Technology Commission(Grant No.22DZ2201200)Top Discipline Plan of Shanghai Universities-Class I and the Fundamental Research Funds for the Central UniversitiesFinancial support from the International Post-Doc Fund of The Hong Kong Polytechnic University is greatly appreciated.
文摘In high-level nuclear waste(HLW)repositories,concrete and compacted bentonite are designed to be employed as buffer materials,which may raise a problem of interactions between concrete and bentonite.These interactions would lead to mineralogy transformation and buffer performance decay of bentonite under the near field environment conditions in a repository.A small-scale experimental setup was established to simulate the concrete-bentonite-site water interaction system from a potential nuclear waste repository in China.Three types of mortars were prepared to correspond to the concrete at different degradation states.The results permit the determination of the following:(1)The macroproperties of Gaomiaozi(GMZ)bentonite(e.g.swelling pressure,permeability,the final dry density,and water content of reacted samples);(2)The composition evolution of fluids from the synthetic site water-concrete-bentonite interaction systems;(3)The sample characterization including Fourier transform infrared spectroscopy(FTIR)and X-ray powder diffraction(XRD).Under the infiltration of the synthesis Beishan site water(BSW),the swelling pressure of bentonite decreases slowly with time after reaching its second swelling peak.The flux decreases with time during the infiltrations,and it tends to be stable after more than 120 d.Due to the cation exchange reactions in the BSW-concrete-bentonite systems,the divalent cations(Ca and Mg)were consumed,and the monovalent cations(Na and K)were released.The dissolution of minerals in the bentonite such as albite causes Si increasing in the pore water.It was concluded that the hydro-mechanical property degradation of bentonite takes place when it comes into contact with concrete mortar,even under low-pH groundwater conditions.The soil dispersion,the uneven water content,and the uneven dry density in bentonite samples may partly contribute to the swelling decay of bentonite.Therefore,the direct contact with concrete has an obvious effect on the performance of bentonite.
文摘Smart agriculture modifies traditional farming practices,and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies.In today’s world where technology is everything,these technologies are utilized to streamline regular tasks and procedures in agriculture,one of the largest and most significant industries in every nation.This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems.Divided into three main sections-security analysis,system architecture and design and risk assessment of Cyber-Physical Systems(CPS)applications-the study delves into various elements crucial for smart farming,such as data sources,infrastructure components,communication protocols,and the roles of different stakeholders such as farmers,agricultural scientists and researchers,technology providers,government agencies,consumers and many others.In contrast to earlier research,this work analyzes the resilience of smart agriculture systems using approaches such as threat modeling,penetration testing,and vulnerability assessments.Important discoveries highlight the concerns connected to unsecured communication protocols,possible threats from malevolent actors,and vulnerabilities in IoT devices.Furthermore,the study suggests enhancements for CPS applications,such as strong access controls,intrusion detection systems,and encryption protocols.In addition,risk assessment techniques are applied to prioritize mitigation tactics and detect potential hazards,addressing issues like data breaches,system outages,and automated farming process sabotage.The research sets itself apart even more by presenting a prototype CPS application that makes use of a digital temperature sensor.This application was first created using a Tinkercad simulator and then using actual hardware with Arduino boards.The CPS application’s defenses against potential threats and vulnerabilities are strengthened by this integrated approach,which distinguishes this research for its depth and usefulness in the field of smart agriculture security.
文摘Energy management is an inspiring domain in developing of renewable energy sources.However,the growth of decentralized energy production is revealing an increased complexity for power grid managers,inferring more quality and reliability to regulate electricity flows and less imbalance between electricity production and demand.The major objective of an energy management system is to achieve optimum energy procurement and utilization throughout the organization,minimize energy costs without affecting production,and minimize environmental effects.Modern energy management is an essential and complex subject because of the excessive consumption in residential buildings,which necessitates energy optimization and increased user comfort.To address the issue of energy management,many researchers have developed various frameworks;while the objective of each framework was to sustain a balance between user comfort and energy consumption,this problem hasn’t been fully solved because of how difficult it is to solve it.An inclusive and Intelligent Energy Management System(IEMS)aims to provide overall energy efficiency regarding increased power generation,increase flexibility,increase renewable generation systems,improve energy consumption,reduce carbon dioxide emissions,improve stability,and reduce energy costs.Machine Learning(ML)is an emerging approach that may be beneficial to predict energy efficiency in a better way with the assistance of the Internet of Energy(IoE)network.The IoE network is playing a vital role in the energy sector for collecting effective data and usage,resulting in smart resource management.In this research work,an IEMS is proposed for Smart Cities(SC)using the ML technique to better resolve the energy management problem.The proposed system minimized the energy consumption with its intelligent nature and provided better outcomes than the previous approaches in terms of 92.11% accuracy,and 7.89% miss-rate.
基金funded by King Saud University through Researchers Supporting Program Number (RSP2024R499).
文摘The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%.
基金funding from Universiti Malaya and Ministry of High Education-Malaysia under Research Grant FRGS/1/2023/TK10/UM/02/3 and GPF 020A-2023supported by Researchers Supporting Project Number(RSPD2024 R803).
文摘This paper presents a smart checkout system designed to mitigate the issues of noise and errors present in the existing barcode and RFID-based systems used at retail stores’checkout counters.This is achieved by integrating a novel AI algorithm,called Improved Laser Simulator Logic(ILSL)into the RFID system.The enhanced RFID system was able to improve the accuracy of item identification,reduce noise interference,and streamline the overall checkout process.The potential of the systemfor noise detection and elimination was initially investigated through a simulation study usingMATLAB and ILSL algorithm.Subsequently,it was deployed in a small-scale environment to validate its real-world performance.Results show that RFID with the proposed new algorithm ILSL and AI basket is capable of accurately detecting the related itemswhile eliminating noise originating fromunrelated objects,achieving an accuracy rate of 88%.
文摘Smart energy monitoring and management system lays a foundation for the application and development of smart energy. However, in recent years, the work efficiency of smart energy development enterprises has generally been low, and there is an urgent need to improve the application efficiency, resilience and sustainability of smart energy monitoring and management system. Digital twin technology provides a data-centric solution to improve smart energy monitoring and management system, bringing an opportunity to transform passive infrastructure assets into data-centric systems. This paper expounds on the concept and key technologies of digital twin, and designs a smart energy monitoring and management system based on digital twin technology, which has dual significance for promoting the development of smart energy field and promoting the application of digital twin.
文摘This study examines the Water-Energy-Food-Ecosystems (WEFE) nexus in Lebanese agriculture, with a focus on the shift from conventional surface irrigation techniques to advanced smart irrigation systems in the Bekaa region, specifically targeting potato cultivation. The study quantitatively analyzes the interaction among water, energy, and agricultural outputs at the farm scale using the WEFE Nexus framework for scenario analysis. It evaluates variations in water productivity, environmental effects, and economic outcomes, offering a detailed view of existing practices and their sustainable improvement potential. The WEFE Nexus assessment demonstrates that smart irrigation integration significantly decreased resource usage: water consumption was reduced by 58%, diesel fuel use for irrigation dropped by 57%, and the demand for labor and fertilizers decreased by 47% and 49%, respectively. This change led to enhanced crop yields and increased resource efficiency, demonstrating the potential of smart irrigation as a transformative strategy for sustainable agriculture in Lebanon and other arid areas. Economic analysis showed that farmers could recover the costs of installing the smart irrigation system within 3 months. The findings highlight the need for further research on integrating smart irrigation with renewable energy, showing potential for sustainable agricultural development. .
文摘Smart Industrial environments use the Industrial Internet of Things(IIoT)for their routine operations and transform their industrial operations with intelligent and driven approaches.However,IIoT devices are vulnerable to cyber threats and exploits due to their connectivity with the internet.Traditional signature-based IDS are effective in detecting known attacks,but they are unable to detect unknown emerging attacks.Therefore,there is the need for an IDS which can learn from data and detect new threats.Ensemble Machine Learning(ML)and individual Deep Learning(DL)based IDS have been developed,and these individual models achieved low accuracy;however,their performance can be improved with the ensemble stacking technique.In this paper,we have proposed a Deep Stacked Neural Network(DSNN)based IDS,which consists of two stacked Convolutional Neural Network(CNN)models as base learners and Extreme Gradient Boosting(XGB)as the meta learner.The proposed DSNN model was trained and evaluated with the next-generation dataset,TON_IoT.Several pre-processing techniques were applied to prepare a dataset for the model,including ensemble feature selection and the SMOTE technique.Accuracy,precision,recall,F1-score,and false positive rates were used to evaluate the performance of the proposed ensemble model.Our experimental results showed that the accuracy for binary classification is 99.61%,which is better than in the baseline individual DL and ML models.In addition,the model proposed for IDS has been compared with similar models.The proposed DSNN achieved better performance metrics than the other models.The proposed DSNN model will be used to develop enhanced IDS for threat mitigation in smart industrial environments.
文摘In the groundbreaking study “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems,” authored by Zaki Ali Bayashot, the transformative role of artificial intelligence (AI) in urban development is meticulously examined. This comprehensive research delineates the multifaceted ways in which AI-powered mobile applications can significantly enhance the efficiency, sustainability, and livability of urban environments, marking a pivotal step towards the realization of smart cities globally. Bayashot meticulously outlines the critical areas where AI-powered apps offer unprecedented advantages, including urban mobility, public safety, energy management, and environmental monitoring. By leveraging AI’s capabilities, these applications not only streamline city operations but also foster a more sustainable interaction between city dwellers and their environment. The paper emphasizes the importance of data-driven decision-making in urban planning, showcasing how AI analytics can predict and mitigate traffic congestion, optimize energy consumption, and enhance emergency response strategies. The author also explores the social implications of AI in urban settings, highlighting the potential for these technologies to bridge the gap between government entities and citizens. Through engaging case studies, Bayashot demonstrates how participatory governance models, enabled by AI apps, can promote transparency, accountability, and citizen engagement in urban management. A significant contribution of this research is its focus on the challenges and opportunities presented by the integration of AI into smart city ecosystems. Bayashot discusses the technical, ethical, and privacy concerns associated with AI applications, advocating for a balanced approach that ensures technological advancements do not come at the expense of civil liberties. The study calls for robust regulatory frameworks to govern the use of AI in public spaces, emphasizing the need for ethical AI practices that respect privacy and promote inclusivity. Furthermore, Bayashot’s research underscores the necessity of cross-disciplinary collaboration in the development and implementation of AI technologies in urban contexts. By bringing together experts from information technology, urban planning, environmental science, and social sciences, the author argues for a holistic approach to smart city development. This interdisciplinary strategy ensures that AI applications are not only technologically sound but also socially and environmentally responsible. The paper concludes with a visionary outlook on the future of smart cities, posited on the seamless integration of AI technologies. Bayashot envisions a world where AI-powered mobile apps not only facilitate smoother urban operations but also empower citizens to actively participate in the shaping of their urban environments. This research serves as a critical call to action for policymakers, technologists, and urban planners to embrace AI as a tool for creating more sustainable, efficient, and inclusive cities. By presenting a detailed analysis of the current state of AI in urban development, coupled with practical insights and forward-looking recommendations, “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems” stands as a seminal work that is poised to inspire and guide the evolution of urban landscapes worldwide. Its comprehensive exploration of the subject matter, combined with its impactful conclusions, make it a must-read for anyone involved in the field of smart city development, AI technology, or urban policy-making.
文摘The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.
基金supported by the Major Public Welfare Special Fund of Henan Province(No.201300210200)the Major Science and Technology Research Special Fund of Henan Province(No.221100210400).
文摘With the rise of blockchain technology,the security issues of smart contracts have become increasingly critical.Despite the availability of numerous smart contract vulnerability detection tools,many face challenges such as slow updates,usability issues,and limited installation methods.These challenges hinder the adoption and practicality of these tools.This paper examines smart contract vulnerability detection tools from 2016 to 2023,sourced from the Web of Science(WOS)and Google Scholar.By systematically collecting,screening,and synthesizing relevant research,38 open-source tools that provide installation methods were selected for further investigation.From a developer’s perspective,this paper offers a comprehensive survey of these 38 open-source tools,discussing their operating principles,installation methods,environmental dependencies,update frequencies,and installation challenges.Based on this,we propose an Ethereum smart contract vulnerability detection framework.This framework enables developers to easily utilize various detection tools and accurately analyze contract security issues.To validate the framework’s stability,over 1700 h of testing were conducted.Additionally,a comprehensive performance test was performed on the mainstream detection tools integrated within the framework,assessing their hardware requirements and vulnerability detection coverage.Experimental results indicate that the Slither tool demonstrates satisfactory performance in terms of system resource consumption and vulnerability detection coverage.This study represents the first performance evaluation of testing tools in this domain,providing significant reference value.
基金supported by the Henan Institute for Chinese Development Strategy of Engineering&Technology(Grant No.2022HENZDA02)the Since&Technology Department of Sichuan Province Project(Grant No.2021YFH0010)the High‐End Foreign Experts Program of the Yunnan Revitalization Talents Support Plan of Yunnan Province.
文摘Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns are recognized as ideal sites for pure hydrogen storage.Evaluation and optimization of site selection for hydrogen storage facilities in salt caverns have become significant issues.In this article,the software CiteSpace is used to analyze and filter hot topics in published research.Based on a detailed classification and analysis,a“four‐factor”model for the site selection of salt cavern hydrogen storage is proposed,encompassing the dynamic demands of hydrogen energy,geological,hydrological,and ground factors of salt mines.Subsequently,20 basic indicators for comprehensive suitability grading of the target site were screened using the analytic hierarchy process and expert survey methods were adopted,which provided a preliminary site selection system for salt cavern hydrogen storage.Ultimately,the developed system was applied for the evaluation of salt cavern hydrogen storage sites in the salt mines of Pingdingshan City,Henan Province,thereby confirming its rationality and effectiveness.This research provides a feasible method and theoretical basis for the site selection of UHS in salt caverns in China.
基金The Key Technology R& D Program of Jiangsu Scienceand Technology Department(No.BE2006010)the Key Technology R& DProgram of Nanjing Science and Technology Bureau(No.200601001)Sci-ence and Technology Research Projects of Nanjing Metro Headquarters(No.8550143007).
文摘The fund budget of multipurpose transit smart card systems is studied by stochastic programming to assign limited funds to different applications reasonably. Under the constraints of a gross fund, models of chance-constrained and dependentchance for the fund budget of multipurpose transit smart card systems are established with application scale and social demand as random variables, respectively aiming to maximize earnings and satisfy the service requirements the furthest; and the genetic algorithm based on stochastic simulation is adopted for model solution. The calculation results show that the fund budget differs greatly with different system objectives which can cause the systems to have distinct expansibilities, and the application scales of some applications may not satisfy user demands with limited funds. The analysis results indicate that the forecast of application scales and application future demands should be done first, and then the system objective is determined according to the system mission, which can help reduce the risks of fund budgets.
文摘Blood loss in peacetime is mainly due to the normal menstrual cycle in women or diseases with surgical intervention. In wartime, blood loss in military personnel is a characteristic sign of a closed or open injury of the body during internal or external bleeding. Access to clinical care for wounded military personnel injured on the battlefield is limited and has long delays compared to patients in peacetime. Most of the deaths of wounded military personnel on the battlefield occur within the first hour after being wounded. The most common causes are delay in providing medical care, loss of time for diagnosis, delay in stabilization of pain shock and large blood loss. Some help in overcoming these problems is provided by the data in the individual capsule, which each soldier of the modern army possesses;however, data in an individual capsule is not sufficient to provide emergency medical care in field and hospital conditions. This paper considers a project for development of a smart real-time monitoring wearable system for blood loss and level of shock stress in wounded persons on the battlefield, which provides medical staff in field and hospital conditions with the necessary information to give timely medical care. Although the hospital will require additional information, the basic information about the victims will already be known before he enters the hospital. It is important to emphasize that the key term in this approach is monitoring. It is tracking, and not a one-time measurement of indicators, that is crucial in a valid definition of bleeding.
文摘Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. In this work, we develop a MATLAB code to examine the effect of the smart grid applications in improving the reliability of the power distribution networks via Monte Carlo Simulation approach. The system used in this paper is the IEEE 34 test feeder. The objective is to measure the installations of the Automatic Reclosers (ARs) as well as the Distributed Generators (DGs) on the reliability indices, SAIDI, SAIFI, CAIDI and EUE, and make comparisons with results from a previous study done by the authors using another approach. The MATLAB code should provide close results to the output of the previous research to verify its effectiveness.
基金This work is financially supported by the National Key Research and Development Program of China(2016YFB1101700)the National Natural Science Foundation of China(51875030)the Academic Excellence Foundation of BUAA for PhD Students.
文摘State-of-the-art technologies such as the Internet of Things(IoT),cloud computing(CC),big data analytics(BDA),and artificial intelligence(AI)have greatly stimulated the development of smart manufacturing.An important prerequisite for smart manufacturing is cyber-physical integration,which is increasingly being embraced by manufacturers.As the preferred means of such integration,cyber-physical systems(CPS)and digital twins(DTs)have gained extensive attention from researchers and practitioners in industry.With feedback loops in which physical processes affect cyber parts and vice versa,CPS and DTs can endow manufacturing systems with greater efficiency,resilience,and intelligence.CPS and DTs share the same essential concepts of an intensive cyber-physical connection,real-time interaction,organization integration,and in-depth collaboration.However,CPS and DTs are not identical from many perspectives,including their origin,development,engineering practices,cyber-physical mapping,and core elements.In order to highlight the differences and correlation between them,this paper reviews and analyzes CPS and DTs from multiple perspectives.
文摘The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, hut benchmarking would give greater confidence. Technical challenges confrontingprocess systems engineers in developing enabling tools and techniques are discussed regarding flexibilityand uncertainty, responsiveness and agility, robustness and security, the prediction of mixture propertiesand function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to driveagility will require tackling new challenges, such as how to ensure the consistency and confidentiality ofdata through long and complex supply chains. Modeling challenges also exist, and involve ensuring that allkey aspects are properly modeled, particularly where health, safety, and environmental concerns requireaccurate predictions of small but critical amounts at specific locations. Environmental concerns will requireus to keep a closer track on all molecular species so that they are optimally used to create sustainablesolutions. Disruptive business models may result, particularly from new personalized products, but that isdifficult to predict.
基金supported by the National Key R&D Program of China(2018YFC1314901)the Natural Science Foundation of China (61871446)the Scientific Research Starting Foundation for New Teachers of Nanjing University of Posts and Telecommunications (NY217033)
文摘A smart medical service system architecture is proposed in this paper to increase medical resource utilization and improve the efficiency of the medical diagnosis process for complex business scenarios in the Medical Internet of Things(MIoT)environment.The resource representation model theory,multi-terminal aggregation algorithm,and the resource discovery algorithm based on latent factor model are also studied.A smart medical service system within the IoT environment is then developed,based on the open source project.Experimental results using real-world datasets illustrate that the proposed smart medical service system architecture can promote the intelligent and efficient management of medical resources to an extent,and assists in the develop towards digitization,intelligence,and precision in the field of medicine.
文摘This work proposes a new design and architecture of a flexible biaxial solar tracker. A new approach was adopted with the use of a two separated cards, the smart and power card in a scalable concept. This module allows a more saving of energy in comparison with the fixed systems for PV (photovoltaic) application and allows hire performances for CSP (concentrated solar power) systems. It provides a significant added value for higher power applications in comparison with the existing system. The developed sun tracking system is autonomous, flexible, scalable and low cost system.