To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function ...To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].展开更多
The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller ...The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.展开更多
The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz...The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.展开更多
Human-centric service is an important domain in smart city and includes rich applications that help residents with shopping, dining, transportation, entertainment, and other daily activities. These applications have g...Human-centric service is an important domain in smart city and includes rich applications that help residents with shopping, dining, transportation, entertainment, and other daily activities. These applications have generated a massive amount of hierarchical data with different schemas. In order to manage and analyze the city-wide and cross-application data in a unified way, data schema integration is necessary. However, data from human-centric services has some distinct characteristics, such as lack of support for semantic, matching, large number of schemas, and incompleteness of schema element labels. These make the schema integra- tion difficult using existing approaches. We propose a novel framework for the data schema integration of the human-centric services in smart city. The framework uses both schema metadata and instance data to do schema matching, and introduces human intervention based on a similarity entropy criteria to balance precision and efficiency. Moreover, the framework works in an incremental manner to reduce computation workload. We conduct an experiment with real-world dataset collected from multiple estate sale application systems. The results show that our approach can produce high-quality mediated schema with relatively less human in- terventions compared to the baseline method.展开更多
A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of...A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of specified latency and accuracy requirements. For the effective design of the communications network, the user and traffic profiles, such as known-user vs. unknown-user populations and bursty vs. non-bursty data traffics, must be carefully considered and subsequently modeled. This paper relates user and traffic models to the deployment of effective multiple access transmission algorithms in the communications network of the SG.展开更多
Using artificial intelligence(AI) and machine learning(ML) techniques, we developed and validated the smart proxy models for history matching of reservoir simulation, sensitivity analysis, and uncertainty assessment b...Using artificial intelligence(AI) and machine learning(ML) techniques, we developed and validated the smart proxy models for history matching of reservoir simulation, sensitivity analysis, and uncertainty assessment by artificial neural network(ANN). The smart proxy models were applied on two cases, the first case study investigated the application of a proxy model for calibrating a reservoir simulation model based on historical data and predicting well production while the second case study investigated the application of an ANN-based proxy model for fast-track modeling of CO2 enhanced oil recovery, aiming at the prediction of the reservoir pressure and phase saturation distribution at injection stage and post-injection stage. The prediction effects for both cases are promising. While a single run of basic numerical simulation model takes hours to days, the smart proxy model runs in a matter of seconds, saving 98.9% of calculating time. The results of these case studies demonstrate the advantage of the proposed workflow for addressing the high run-time, computational time and computational cost of numerical simulation models. In addition, these proxy models predict the outputs of reservoir simulation models with high accuracy.展开更多
基金Project(61273095)supported by the National Natural Science Foundation of ChinaProject(135225)supported by the Academy of Finland
文摘To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].
基金Supported by the National Natural Science Foundation of China(60874084)the Academy of Finland(135225,127299)
文摘The issue of the stability and controller design of Takagi-Sugeno(T-S) fuzzy control systems with time-delay is investigated under imperfect premise matching when the T-S fuzzy time-delay model and fuzzy controller do not share the same membership functions.A new stability criterion which contains the information of membership functions is derived.The new stability criterion is less conservative,and enhances the design flexibility.Two numerical examples are presented to illustrate the conservativeness and effectiveness of the proposed method.
基金Supported by the National Science and Technology Major Project(2017ZX05063-005)Science and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(YGJ2019-12-04)。
文摘The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.
基金funded by the National High Technology Research and Development Program of China(863)under Grant No.2013AA01A605
文摘Human-centric service is an important domain in smart city and includes rich applications that help residents with shopping, dining, transportation, entertainment, and other daily activities. These applications have generated a massive amount of hierarchical data with different schemas. In order to manage and analyze the city-wide and cross-application data in a unified way, data schema integration is necessary. However, data from human-centric services has some distinct characteristics, such as lack of support for semantic, matching, large number of schemas, and incompleteness of schema element labels. These make the schema integra- tion difficult using existing approaches. We propose a novel framework for the data schema integration of the human-centric services in smart city. The framework uses both schema metadata and instance data to do schema matching, and introduces human intervention based on a similarity entropy criteria to balance precision and efficiency. Moreover, the framework works in an incremental manner to reduce computation workload. We conduct an experiment with real-world dataset collected from multiple estate sale application systems. The results show that our approach can produce high-quality mediated schema with relatively less human in- terventions compared to the baseline method.
文摘A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of specified latency and accuracy requirements. For the effective design of the communications network, the user and traffic profiles, such as known-user vs. unknown-user populations and bursty vs. non-bursty data traffics, must be carefully considered and subsequently modeled. This paper relates user and traffic models to the deployment of effective multiple access transmission algorithms in the communications network of the SG.
文摘Using artificial intelligence(AI) and machine learning(ML) techniques, we developed and validated the smart proxy models for history matching of reservoir simulation, sensitivity analysis, and uncertainty assessment by artificial neural network(ANN). The smart proxy models were applied on two cases, the first case study investigated the application of a proxy model for calibrating a reservoir simulation model based on historical data and predicting well production while the second case study investigated the application of an ANN-based proxy model for fast-track modeling of CO2 enhanced oil recovery, aiming at the prediction of the reservoir pressure and phase saturation distribution at injection stage and post-injection stage. The prediction effects for both cases are promising. While a single run of basic numerical simulation model takes hours to days, the smart proxy model runs in a matter of seconds, saving 98.9% of calculating time. The results of these case studies demonstrate the advantage of the proposed workflow for addressing the high run-time, computational time and computational cost of numerical simulation models. In addition, these proxy models predict the outputs of reservoir simulation models with high accuracy.