Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are ...Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are also leading to the development of indoor environments that are more comfortable and conducive to improving individuals'quality of life.Unfortunately,dual-responsive materials have not received ample research attention due to economic and technological challenges.As a consequence,the broader utilization of smart windows faces hindrances.To address this new generational multistimulus responsive chromic materials,our group has adopted a developmental strategy to create a poly(NIPAM)n-HV as a switchable material by anchoring active viologen(HV)onto a phase-changing poly(NIPAM)n-based smart material for better utility and activity.These constructed smart windows facilitate individualistic reversible switching,from a highly transparent state to an opaque state(thermochromic)and a red state(electrochromic),as well as facilitate a simultaneous dual-stimuli response reversible switching from a clear transparent state to a fully opaque(thermochromic)and orange(electrochromic)states.Absolute privacy can be attained in smart windows designed for exclusive settings by achieving zero transmittance.Each unique chromic mode operates independently and modulates visible and near-infrared(NIR)light in a distinct manner.Hence,these smart windows with thermal and electric dual-stimuli responsiveness demonstrate remarkable heat regulation capabilities,rendering them highly attractive for applications in building facades,energy harvesting,privacy protection,and color display.展开更多
Exploring materials with high electrochemical activity is of keen interest for electrochemistry-controlled optical and energy storage devices.However,it remains a great challenge for transition metal oxides to meet th...Exploring materials with high electrochemical activity is of keen interest for electrochemistry-controlled optical and energy storage devices.However,it remains a great challenge for transition metal oxides to meet this feature due to their low electron conductivity and insufficient reaction sites.Here,we propose a type of transition metal phosphate(NiHPO_(4)·3H_(2)O,NHP)by a facile and scalable electrodeposition method,which can achieve the capability of efficient ion accommodation and injection/extraction for electrochromic energy storage applications.Specifically,the NHP film with an ultra-high transmittance(approach to 100%)achieves a large optical modulation(90.8%at 500 nm),high coloration efficiency(75.4 cm^(2)C^(-1)at 500 nm),and a high specific capacity of 47.8 mAh g^(-1)at 0.4 A g^(-1).Furthermore,the transformation mechanism of NHP upon electrochemical reaction is systematically elucidated using in situ and ex situ techniques.Ultimately,a large-area electrochromic smart window with 100 cm^(2)is constructed based on the NHP electrode,displaying superior electrochromic energy storage performance in regulating natural light and storing electrical charges.Our findings may open up new strategies for developing advanced electrochromic energy storage materials and smart windows.展开更多
Dual-band electrochromic smart windows(DESWs)with independent control of the transmittance of near-infrared and visible light show great potential in the application of smart and energy-saving buildings.The current st...Dual-band electrochromic smart windows(DESWs)with independent control of the transmittance of near-infrared and visible light show great potential in the application of smart and energy-saving buildings.The current strategy for building DESWs is to screen materials for composite or prepare plasmonic nanocrystal films.These rigorous preparation processes seriously limit the further development of DESWs.Herein,we report a facile and effective sol-gel strategy using a foaming agent to achieve porous Ti-doped tungsten oxide film for the high performance of DESWs.The introduction of foaming agent polyvinylpyrrolidone during the film preparation can increase the specific surface area and free carrier concentration of the films and enhance their independent regulation ability of near-infrared electrochromism.As a result,the optimal film shows excellent dual-band electrochromic properties,including high optical modulation(84.9%at 633 nm and 90.3%at 1200 nm),high coloration efficiency(114.9 cm^(2) C^(-1) at 633 nm and 420.3 cm^(2) C^(-1) at 1200 nm),quick switching time,excellent bistability,and good cycle stability(the transmittance modulation losses at 633 and 1200 nm were 11%and 3.5%respectively after 1000 cycles).A demonstrated DESW fabricated by the sol-gel film showed effective management of heat and light of sunlight.This study represents a significant advance in the preparation of dual-band electrochromic films,which will shed new light on advancing electrochromic technology for future energy-saving smart buildings.展开更多
Smart windows with tunable optical properties that respond to external environments are being developed to reduce energy consumption in buildings.In the present study,we introduce a new type of 3D printed hydrogel wit...Smart windows with tunable optical properties that respond to external environments are being developed to reduce energy consumption in buildings.In the present study,we introduce a new type of 3D printed hydrogel with amazing flexibility and stretchability(as large as 1500%),as well as tunable optical performance controlled by surrounding temperatures.The hydrogel on a PDMS substrate shows transparent-opaque transition with high solar modulation(ΔT_(sol))up to 79.332% around its lower critical solution temperature(L_(CST))while maintaining a high luminous transmittance(T_(lum))of 85.847% at 20℃.In addition,selective transparent-opaque transition above LCST can be achieved by patterned hydrogels which are precisely fabricated via a projection micro-stereolithography based 3D printing technique.Our hydrogel promises great potential applications for the next generation of soft smart windows.展开更多
With the rapid development of optoelectronics,electrochromic(EC)materials(ECMs)with the advan-tages of low power consumption,easy viewing,high contrast ratio,etc have attached more and more attention from the fields o...With the rapid development of optoelectronics,electrochromic(EC)materials(ECMs)with the advan-tages of low power consumption,easy viewing,high contrast ratio,etc have attached more and more attention from the fields of smart windows,electronic billboards,emerging wearable and portable electronics,and other next-generation displays.Nickel oxide(NiO)is a promising candidate for high-performance ECMs because of its neutral-colored states and low cost.However,NiO-based ECMs still face the problem of slow switching speed due to their low electrical conductivity and small lattice spacing.Metal-organic frameworks(MOFs)are promising candidates to fabricate hollow and porous transition metal oxides(TMOs)with high ion transport efficiency,excellent specific capacitance,and electrochemical activities.In this work,porous yolk-shell NiO nanospheres(PYS-NiO NSs)were syn-thesized via a solvothermal and subsequent calcination process of Ni-MOF,which exhibited outstanding EC performance.Because the large specific surface areas and hollow porous nanostructures were conducive to ionic transport,PYS-NiO NSs exhibited a fast coloring/bleaching speed(3.6/3.9 s per one coloring/bleaching cycle)and excellent cycling stability(82%of capacity retention after 3000 cycles).These superior EC properties indicated that the PYS-NiO NSs was a promising candidate for high-performance EC devices.This work provides a new and feasible strategy for the efficient preparation of TMOs ECMs with good EC performance,especially fast switching speed.展开更多
Thermochromic smart windows have gained increasing popularity in light modulation and energy management in buildings.However,the fabrication of flexible thermochromic smart windows with high luminous transmittance(Tlu...Thermochromic smart windows have gained increasing popularity in light modulation and energy management in buildings.However,the fabrication of flexible thermochromic smart windows with high luminous transmittance(Tlum),tailorable critical temperature(τc),strong solar modulation ability(ΔTsol),and long-term durability remains a huge challenge.In this study,hydrogel-based thermochromic smart windows are fabricated by sandwiching thermochromic hydrogels of polyallylamine hydrochloride,polyacrylic acid,and carbonized polymer dots(CPDs)complexes between two pieces of transparent substrates.Benefiting from the incorporation of nanosized CPDs,the thermochromic hydrogel has an ultrahigh Tlum of~98.7%,a desirableτc of~24.2℃,aΔTsol of~89.3%and a rapid transition time of~3 s from opaque state to transparent state.Moreover,the thermochromic hydrogel exhibits excellent anti-freezing ability,tight adhesion toward various substrates,and excellent self-healing capability.The self-healing capability enables the fabrication of large-area smart windows by welding multiple hydrogel pieces.The smart windows retain their original thermochromic properties after being stored under ambient conditions for at least 147 days or undergoing 10,000 uninterrupted heating/cooling cycles.The model houses with smart windows can achieve a temperature reduction of 9.2℃,demonstrating the excellent indoor temperature modulation performance of the smart windows.展开更多
Electrochromic smart windows have attracted much attention in energy-saving buildings because of their ability to selectively modulate visible(VIS)and near-infrared(NIR)light transmittance.As is known,the NIR region a...Electrochromic smart windows have attracted much attention in energy-saving buildings because of their ability to selectively modulate visible(VIS)and near-infrared(NIR)light transmittance.As is known,the NIR region accounts for about 50%of the total solar radiation.Therefore,reducing the NIR transmittance of windows will play a crucial role in reducing the energy consumption of buildings.However,for most of the reported electrochromic materials(ECMs)-based windows,it remains a longlasting challenge about how to achieve a low NIR transmittance during the past decades.In this work,we synthesize oxygendeficient tungsten oxide(WO_(3−x))nanoflowers(NFs)by a simple and efficient method that is facile for their mass production.The WO_(3−x)NFs exhibit low NIR transmittance of only 4.11%,0.60%,and 0.19%at 1200,1600,and 1800 nm,respectively,due to the localized surface plasmon resonance(LSPR)effect.Besides,the WO_(3−x)NFs exhibit an excellent dual-band modulating ability for both VIS and NIR light.They are able to operate in three distinct modes,including a bright mode,a cool mode,and a dark mode.Moreover,the WO_(3−x)NFs exhibit a fast bleaching/coloring time(1.54/6.67 s),and excellent cycling stability(97.75%of capacity retention after 4000 s).展开更多
Windows are one of the least energy-efficient components of a building.It allows energy to escape,leading to high cooling demand in summer and energy loss in winter.Sunlight and temperature in the building also affect...Windows are one of the least energy-efficient components of a building.It allows energy to escape,leading to high cooling demand in summer and energy loss in winter.Sunlight and temperature in the building also affect people's health,comfort,and even productivity.As a result,controlling the heat and light entering the building dynamically is critical for improving the comfort of building occupants and reducing energy consumption.In this work,we develop a tunable smart window based on transparent dielectric elastomer actuators(DEAs)as an alternative solution to sunlight and temperature control.The transparency-tuning is achieved by creating wrinkles in a soft elastomer film made of waterborne polyurethane(WPU).The actuation mechanism is based on highly transparent dielectric elastomer actuators that use all solid-state stretchable transparent conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/(PEDOT:PSS/WPU)as compliant electrodes.The modulation range of the smart tunable window with direct viewing is achieved to be 35%to 90%,which is one of the largest among existing tunable windows.At the low-transparency state,the window can also effectively block the heat and decrease the temperature rise to 2℃over 200 s,while the ambient temperature rises by 6℃with direct sunlight.We anticipate that this transparency-tuning mechanism is potentially useful for privacy protection,smart glass,projector screens,displays,and camouflage.The heat isolation feature also has the potential to reduce carbon emissions and improve the sustainability of buildings and greenhouses.展开更多
To ensure the safety of residents’lives and property by using automatic opening and closing of ordinary windows,this article designs an intelligent window automatic monitoring system.The article proposes a software a...To ensure the safety of residents’lives and property by using automatic opening and closing of ordinary windows,this article designs an intelligent window automatic monitoring system.The article proposes a software and hardware design scheme for the system,which comprises a microcontroller control module,temperature and humidity detection module,harmful gas detection module,rainfall detection module,human thermal radiation induction module,Organic Light-Emitting Diode(OLED)display module,stepper motor drive module,Wi-Fi communication module,etc.Users use this system to monitor environmental data such as temperature,humidity,rainfall,harmful gas concentrations,and human health.Users can control the opening and closing of windows through manual,microcontroller,and mobile application(app)remote methods,providing users with a more convenient,comfortable,and safe living environment.展开更多
Intelligent responsive devices are crucial for a variety of applications ranging from smart electronics to robotics.Electro-responsive cholesteric liquid crystals(CLC)have been widely applied in display panels,smart w...Intelligent responsive devices are crucial for a variety of applications ranging from smart electronics to robotics.Electro-responsive cholesteric liquid crystals(CLC)have been widely applied in display panels,smart windows,and so on.In this work,we realize the mechanical stimuli-triggered optical responses of the CLC by integrating it with a triboelectric nanogenerator(TENG),which converts the mechanical motion into alternating current electricity and then tunes the different optical responses of the CLC.When the voltage applied on the CLC is relatively low(15–40 V),the TENG drives the switching between the bistable planar state and focal conic state of the CLC,which shows potential applications in selfpowered smart windows or E-paper displays.When the voltage supplied by the TENG is larger than60 V,a self-powered optical switch is demonstrated by utilizing the transformation between focal conic state and instantons homeotropic state of the CLC.This triboelectric-optical responsive device consumes no extra electric power and suggests a great potential for future smart electronics.展开更多
The structural flexibility of hybrid perovskite materials allows for phase transition and consequently thermochromic properties.Here we investigate the thermochromic performance in a series of copper-based layered per...The structural flexibility of hybrid perovskite materials allows for phase transition and consequently thermochromic properties.Here we investigate the thermochromic performance in a series of copper-based layered perovskites with organic cations having different alky chain lengths. Their transition temperature is found to be dependent on the organic cations due to molecular motion and hydrogen bond interaction, providing possibilities to prepare thermochromic semiconductors near room temperature for smart window applications.展开更多
Semitransparent polymer solar cells(ST-PSCs)have attracted worldwide attention owing to unique superiority in multiple utilization of incident light However,the color of ST-PSCs is relatively uniform after fabrication...Semitransparent polymer solar cells(ST-PSCs)have attracted worldwide attention owing to unique superiority in multiple utilization of incident light However,the color of ST-PSCs is relatively uniform after fabrication,cannot be dynamically tuned in terms of application requirement.Herein,we demonstrate a high-efficiency ST-PSCs as a smart window,which can be reversibly switched on and off by a gasochromic tungsten trioxide/platinum(W03/Pt)back reflector layer.The ST-PSCs can be switchable between colored and bleached states with fast response speed of sub-second during hydrogen exposure.Meanwhile,the color and transparency-switching enable light trapping enhancement in long wavelength range,which can systematically improve power conversion efficiency(PCE).As a result,the ST-PSCs contribute a PCE of 10.2%and 9.1%as well as corresponding average visible transmission(AVT)of 25.4%and33.8%at colored state and bleached state,respectively,which can meet the visual aesthetics requirement well in building integrated photovoltaics.To the best of our knowledge,this is the first example for STPSCs that achieve both color-switching and light trapping.Furthermore,the smart windows facing to automobile sunroof are proposed to prove a practical application towards commercialization.We believe that smart windows with gasochromic functions can promise potential opportunities and directions for the future development of ST-PSCs.展开更多
ZTE, TMN and Microsoft have jointly launched two new 3.5G smart phones in Portugal. The SilverBelt and BlueBelt II handsets feature the WindowsR phone operating system which brings together the mobile phone,
An all solid-state electrochromic smart window employing prussian blue and electrodeposited WO-3 film with poly (vinyl chloride) (PVC) gel electrolyte that has high conductivity (2 mS/cm) at room temperature has been ...An all solid-state electrochromic smart window employing prussian blue and electrodeposited WO-3 film with poly (vinyl chloride) (PVC) gel electrolyte that has high conductivity (2 mS/cm) at room temperature has been fabricated for the first time. The smart window has been found to be excellent for electrochromism and memory characteristics.展开更多
Zinc-anode-based electrochromic devices(ZECDs) are emerging as the next-generation energy-e cient transparent electronics. We report anatase W-doped TiO_(2) nanocrystals(NCs) as a Zn^(2+) active electrochromic materia...Zinc-anode-based electrochromic devices(ZECDs) are emerging as the next-generation energy-e cient transparent electronics. We report anatase W-doped TiO_(2) nanocrystals(NCs) as a Zn^(2+) active electrochromic material. It demonstrates that the W doping in TiO_(2) highly reduces the Zn^(2+) intercalation energy,thus triggering the electrochromism. The prototype ZECDs based on W-doped TiO_(2) NCs deliver a high optical modulation(66% at 550 nm),fast spectral response times(9/2.7 s at 550 nm for coloration/bleaching),and good electrochemical stability(8.2% optical modulation loss after 1000 cycles).展开更多
基金supported by the National Research Foundation (NRF)grants funded by the Ministry of Education (2020R1A6A1A03038817),Republic of Korea。
文摘Functional materials may change color by heat and electricity separately or simultaneously in smart windows.These materials have not only demonstrated remarkable potential in the modulation of solar radiation but are also leading to the development of indoor environments that are more comfortable and conducive to improving individuals'quality of life.Unfortunately,dual-responsive materials have not received ample research attention due to economic and technological challenges.As a consequence,the broader utilization of smart windows faces hindrances.To address this new generational multistimulus responsive chromic materials,our group has adopted a developmental strategy to create a poly(NIPAM)n-HV as a switchable material by anchoring active viologen(HV)onto a phase-changing poly(NIPAM)n-based smart material for better utility and activity.These constructed smart windows facilitate individualistic reversible switching,from a highly transparent state to an opaque state(thermochromic)and a red state(electrochromic),as well as facilitate a simultaneous dual-stimuli response reversible switching from a clear transparent state to a fully opaque(thermochromic)and orange(electrochromic)states.Absolute privacy can be attained in smart windows designed for exclusive settings by achieving zero transmittance.Each unique chromic mode operates independently and modulates visible and near-infrared(NIR)light in a distinct manner.Hence,these smart windows with thermal and electric dual-stimuli responsiveness demonstrate remarkable heat regulation capabilities,rendering them highly attractive for applications in building facades,energy harvesting,privacy protection,and color display.
基金financially the National Natural Science Foundation of China(U2004175,51902086 and 62222402)China Postdoctoral Science Foundation(2022M711036)the Key Scientific Research Project plan of the University in Henan Province(22A430002)。
文摘Exploring materials with high electrochemical activity is of keen interest for electrochemistry-controlled optical and energy storage devices.However,it remains a great challenge for transition metal oxides to meet this feature due to their low electron conductivity and insufficient reaction sites.Here,we propose a type of transition metal phosphate(NiHPO_(4)·3H_(2)O,NHP)by a facile and scalable electrodeposition method,which can achieve the capability of efficient ion accommodation and injection/extraction for electrochromic energy storage applications.Specifically,the NHP film with an ultra-high transmittance(approach to 100%)achieves a large optical modulation(90.8%at 500 nm),high coloration efficiency(75.4 cm^(2)C^(-1)at 500 nm),and a high specific capacity of 47.8 mAh g^(-1)at 0.4 A g^(-1).Furthermore,the transformation mechanism of NHP upon electrochemical reaction is systematically elucidated using in situ and ex situ techniques.Ultimately,a large-area electrochromic smart window with 100 cm^(2)is constructed based on the NHP electrode,displaying superior electrochromic energy storage performance in regulating natural light and storing electrical charges.Our findings may open up new strategies for developing advanced electrochromic energy storage materials and smart windows.
基金supported by the National Natural Science Foundation of China(51902064)the Natural Science Foundation of Guangxi(2022GXNSFFA0350325)+2 种基金the Scientific and Technological Bases and Talents of Guangxi(Guike AD20159073)the special fund for“Guangxi Bagui Scholars”the“Guangxi HundredTalent Program”。
文摘Dual-band electrochromic smart windows(DESWs)with independent control of the transmittance of near-infrared and visible light show great potential in the application of smart and energy-saving buildings.The current strategy for building DESWs is to screen materials for composite or prepare plasmonic nanocrystal films.These rigorous preparation processes seriously limit the further development of DESWs.Herein,we report a facile and effective sol-gel strategy using a foaming agent to achieve porous Ti-doped tungsten oxide film for the high performance of DESWs.The introduction of foaming agent polyvinylpyrrolidone during the film preparation can increase the specific surface area and free carrier concentration of the films and enhance their independent regulation ability of near-infrared electrochromism.As a result,the optimal film shows excellent dual-band electrochromic properties,including high optical modulation(84.9%at 633 nm and 90.3%at 1200 nm),high coloration efficiency(114.9 cm^(2) C^(-1) at 633 nm and 420.3 cm^(2) C^(-1) at 1200 nm),quick switching time,excellent bistability,and good cycle stability(the transmittance modulation losses at 633 and 1200 nm were 11%and 3.5%respectively after 1000 cycles).A demonstrated DESW fabricated by the sol-gel film showed effective management of heat and light of sunlight.This study represents a significant advance in the preparation of dual-band electrochromic films,which will shed new light on advancing electrochromic technology for future energy-saving smart buildings.
基金supported by the National Natural Science Foundation of China (52006056)Key-Area Research and Development Program of Guangdong Province (2020B090923003)+1 种基金Civil Aerospace Technology Research Project (B0108)Natural Science Foundation of Hunan through Grant No. 2020JJ3012
文摘Smart windows with tunable optical properties that respond to external environments are being developed to reduce energy consumption in buildings.In the present study,we introduce a new type of 3D printed hydrogel with amazing flexibility and stretchability(as large as 1500%),as well as tunable optical performance controlled by surrounding temperatures.The hydrogel on a PDMS substrate shows transparent-opaque transition with high solar modulation(ΔT_(sol))up to 79.332% around its lower critical solution temperature(L_(CST))while maintaining a high luminous transmittance(T_(lum))of 85.847% at 20℃.In addition,selective transparent-opaque transition above LCST can be achieved by patterned hydrogels which are precisely fabricated via a projection micro-stereolithography based 3D printing technique.Our hydrogel promises great potential applications for the next generation of soft smart windows.
基金supported by the Tsinghua-Toyota Joint Research Fund,National Key Research Program(grant Nos.2020YFA0210702 and 2020YFC2201103)the National Natural Science Foundation of China(grant Nos.51872156 and 22075163)China Postdoctoral Science Foundation funded project(grant No.2022M721808).
文摘With the rapid development of optoelectronics,electrochromic(EC)materials(ECMs)with the advan-tages of low power consumption,easy viewing,high contrast ratio,etc have attached more and more attention from the fields of smart windows,electronic billboards,emerging wearable and portable electronics,and other next-generation displays.Nickel oxide(NiO)is a promising candidate for high-performance ECMs because of its neutral-colored states and low cost.However,NiO-based ECMs still face the problem of slow switching speed due to their low electrical conductivity and small lattice spacing.Metal-organic frameworks(MOFs)are promising candidates to fabricate hollow and porous transition metal oxides(TMOs)with high ion transport efficiency,excellent specific capacitance,and electrochemical activities.In this work,porous yolk-shell NiO nanospheres(PYS-NiO NSs)were syn-thesized via a solvothermal and subsequent calcination process of Ni-MOF,which exhibited outstanding EC performance.Because the large specific surface areas and hollow porous nanostructures were conducive to ionic transport,PYS-NiO NSs exhibited a fast coloring/bleaching speed(3.6/3.9 s per one coloring/bleaching cycle)and excellent cycling stability(82%of capacity retention after 3000 cycles).These superior EC properties indicated that the PYS-NiO NSs was a promising candidate for high-performance EC devices.This work provides a new and feasible strategy for the efficient preparation of TMOs ECMs with good EC performance,especially fast switching speed.
基金supported by the National Natural Science Foundation of China (No.21935004).
文摘Thermochromic smart windows have gained increasing popularity in light modulation and energy management in buildings.However,the fabrication of flexible thermochromic smart windows with high luminous transmittance(Tlum),tailorable critical temperature(τc),strong solar modulation ability(ΔTsol),and long-term durability remains a huge challenge.In this study,hydrogel-based thermochromic smart windows are fabricated by sandwiching thermochromic hydrogels of polyallylamine hydrochloride,polyacrylic acid,and carbonized polymer dots(CPDs)complexes between two pieces of transparent substrates.Benefiting from the incorporation of nanosized CPDs,the thermochromic hydrogel has an ultrahigh Tlum of~98.7%,a desirableτc of~24.2℃,aΔTsol of~89.3%and a rapid transition time of~3 s from opaque state to transparent state.Moreover,the thermochromic hydrogel exhibits excellent anti-freezing ability,tight adhesion toward various substrates,and excellent self-healing capability.The self-healing capability enables the fabrication of large-area smart windows by welding multiple hydrogel pieces.The smart windows retain their original thermochromic properties after being stored under ambient conditions for at least 147 days or undergoing 10,000 uninterrupted heating/cooling cycles.The model houses with smart windows can achieve a temperature reduction of 9.2℃,demonstrating the excellent indoor temperature modulation performance of the smart windows.
基金the Tsinghua-Toyota Joint Research Fund,the National Key Research Program(Nos.2020YFA0210702 and 2020YFC2201103)the National Natural Science Foundation of China(Nos.51872156 and 22075163)the China Postdoctoral Science Foundation funded project(No.2022M721808).
文摘Electrochromic smart windows have attracted much attention in energy-saving buildings because of their ability to selectively modulate visible(VIS)and near-infrared(NIR)light transmittance.As is known,the NIR region accounts for about 50%of the total solar radiation.Therefore,reducing the NIR transmittance of windows will play a crucial role in reducing the energy consumption of buildings.However,for most of the reported electrochromic materials(ECMs)-based windows,it remains a longlasting challenge about how to achieve a low NIR transmittance during the past decades.In this work,we synthesize oxygendeficient tungsten oxide(WO_(3−x))nanoflowers(NFs)by a simple and efficient method that is facile for their mass production.The WO_(3−x)NFs exhibit low NIR transmittance of only 4.11%,0.60%,and 0.19%at 1200,1600,and 1800 nm,respectively,due to the localized surface plasmon resonance(LSPR)effect.Besides,the WO_(3−x)NFs exhibit an excellent dual-band modulating ability for both VIS and NIR light.They are able to operate in three distinct modes,including a bright mode,a cool mode,and a dark mode.Moreover,the WO_(3−x)NFs exhibit a fast bleaching/coloring time(1.54/6.67 s),and excellent cycling stability(97.75%of capacity retention after 4000 s).
基金the support from the Singapore Institute of Manufacturing Technology(SIMTech),Agency for Science,Technology and Research(A*STAR),Singaporethe support from the Chinese University of Hong Kong,Shenzhen(Grant No.UDF01001987)Shenzhen Institute of Artificial Intelligence and Robotics for Society(Grant No.AC01202101113)。
文摘Windows are one of the least energy-efficient components of a building.It allows energy to escape,leading to high cooling demand in summer and energy loss in winter.Sunlight and temperature in the building also affect people's health,comfort,and even productivity.As a result,controlling the heat and light entering the building dynamically is critical for improving the comfort of building occupants and reducing energy consumption.In this work,we develop a tunable smart window based on transparent dielectric elastomer actuators(DEAs)as an alternative solution to sunlight and temperature control.The transparency-tuning is achieved by creating wrinkles in a soft elastomer film made of waterborne polyurethane(WPU).The actuation mechanism is based on highly transparent dielectric elastomer actuators that use all solid-state stretchable transparent conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/(PEDOT:PSS/WPU)as compliant electrodes.The modulation range of the smart tunable window with direct viewing is achieved to be 35%to 90%,which is one of the largest among existing tunable windows.At the low-transparency state,the window can also effectively block the heat and decrease the temperature rise to 2℃over 200 s,while the ambient temperature rises by 6℃with direct sunlight.We anticipate that this transparency-tuning mechanism is potentially useful for privacy protection,smart glass,projector screens,displays,and camouflage.The heat isolation feature also has the potential to reduce carbon emissions and improve the sustainability of buildings and greenhouses.
文摘To ensure the safety of residents’lives and property by using automatic opening and closing of ordinary windows,this article designs an intelligent window automatic monitoring system.The article proposes a software and hardware design scheme for the system,which comprises a microcontroller control module,temperature and humidity detection module,harmful gas detection module,rainfall detection module,human thermal radiation induction module,Organic Light-Emitting Diode(OLED)display module,stepper motor drive module,Wi-Fi communication module,etc.Users use this system to monitor environmental data such as temperature,humidity,rainfall,harmful gas concentrations,and human health.Users can control the opening and closing of windows through manual,microcontroller,and mobile application(app)remote methods,providing users with a more convenient,comfortable,and safe living environment.
基金supported by the National Key Research and Development Program of China(2016YFA0202702)the Youth Innovation Promotion Association of CAS。
文摘Intelligent responsive devices are crucial for a variety of applications ranging from smart electronics to robotics.Electro-responsive cholesteric liquid crystals(CLC)have been widely applied in display panels,smart windows,and so on.In this work,we realize the mechanical stimuli-triggered optical responses of the CLC by integrating it with a triboelectric nanogenerator(TENG),which converts the mechanical motion into alternating current electricity and then tunes the different optical responses of the CLC.When the voltage applied on the CLC is relatively low(15–40 V),the TENG drives the switching between the bistable planar state and focal conic state of the CLC,which shows potential applications in selfpowered smart windows or E-paper displays.When the voltage supplied by the TENG is larger than60 V,a self-powered optical switch is demonstrated by utilizing the transformation between focal conic state and instantons homeotropic state of the CLC.This triboelectric-optical responsive device consumes no extra electric power and suggests a great potential for future smart electronics.
基金supported by the Ministry of Science and Technology of China (2017YFA0204502)the National Natural Science Foundation of China (21873105)
文摘The structural flexibility of hybrid perovskite materials allows for phase transition and consequently thermochromic properties.Here we investigate the thermochromic performance in a series of copper-based layered perovskites with organic cations having different alky chain lengths. Their transition temperature is found to be dependent on the organic cations due to molecular motion and hydrogen bond interaction, providing possibilities to prepare thermochromic semiconductors near room temperature for smart window applications.
基金financially supported by the National Natural Science Foundation of China(61875072,11774099,and21734001)the Science and Technology Innovation Leading Talent and Team Project of Jilin Province(20170519010JH)+1 种基金Guangdong Natural Science Funds for Distinguished Young Scholar(2014A030306005)International Cooperation and Exchange Project of Jilin Province(20170414002GH,20180414001GH).
文摘Semitransparent polymer solar cells(ST-PSCs)have attracted worldwide attention owing to unique superiority in multiple utilization of incident light However,the color of ST-PSCs is relatively uniform after fabrication,cannot be dynamically tuned in terms of application requirement.Herein,we demonstrate a high-efficiency ST-PSCs as a smart window,which can be reversibly switched on and off by a gasochromic tungsten trioxide/platinum(W03/Pt)back reflector layer.The ST-PSCs can be switchable between colored and bleached states with fast response speed of sub-second during hydrogen exposure.Meanwhile,the color and transparency-switching enable light trapping enhancement in long wavelength range,which can systematically improve power conversion efficiency(PCE).As a result,the ST-PSCs contribute a PCE of 10.2%and 9.1%as well as corresponding average visible transmission(AVT)of 25.4%and33.8%at colored state and bleached state,respectively,which can meet the visual aesthetics requirement well in building integrated photovoltaics.To the best of our knowledge,this is the first example for STPSCs that achieve both color-switching and light trapping.Furthermore,the smart windows facing to automobile sunroof are proposed to prove a practical application towards commercialization.We believe that smart windows with gasochromic functions can promise potential opportunities and directions for the future development of ST-PSCs.
文摘ZTE, TMN and Microsoft have jointly launched two new 3.5G smart phones in Portugal. The SilverBelt and BlueBelt II handsets feature the WindowsR phone operating system which brings together the mobile phone,
文摘An all solid-state electrochromic smart window employing prussian blue and electrodeposited WO-3 film with poly (vinyl chloride) (PVC) gel electrolyte that has high conductivity (2 mS/cm) at room temperature has been fabricated for the first time. The smart window has been found to be excellent for electrochromism and memory characteristics.
基金National Key Research and Development Program of China(2021YFA0718900)Key Collaborative Research Program of the Alliance of International Science Organizations(ANSO-CR-KP-2021-01)+5 种基金National Natural Science Foundation of China(51972328,62005301,52002392,62175248)Shanghai B&R International Cooperation Program(20640770200)Shanghai‘‘Science and Technology Innovation Action Plan’’Intergovernmental International Science and Technology Cooperation Program(21520712500)Shanghai Science and Technology Funds(23ZR1481900)Open Project of Wuhan National Laboratory for Optoelectronics(2022WNLOKF014)Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures(SKL202202)。
基金supported by the National Natural Science Foundation of China (51902064)the Scientific and Technological Bases and Talents of Guangxi (2019AC20198)+2 种基金Guangxi Natural Science Foundation (2017GXNSFGA198005)the special fund for “Guangxi Bagui Scholars”the “Guangxi Hundred-Talent Program”。
文摘Zinc-anode-based electrochromic devices(ZECDs) are emerging as the next-generation energy-e cient transparent electronics. We report anatase W-doped TiO_(2) nanocrystals(NCs) as a Zn^(2+) active electrochromic material. It demonstrates that the W doping in TiO_(2) highly reduces the Zn^(2+) intercalation energy,thus triggering the electrochromism. The prototype ZECDs based on W-doped TiO_(2) NCs deliver a high optical modulation(66% at 550 nm),fast spectral response times(9/2.7 s at 550 nm for coloration/bleaching),and good electrochemical stability(8.2% optical modulation loss after 1000 cycles).