The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil...The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.展开更多
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ...High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.展开更多
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties....Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.展开更多
Quantifying differences in secondary organic aerosols(SOAs)between the preindustrial period and the present day is crucial to assess climate forcing and environmental effects resulting from anthropogenic activities.Th...Quantifying differences in secondary organic aerosols(SOAs)between the preindustrial period and the present day is crucial to assess climate forcing and environmental effects resulting from anthropogenic activities.The lack of vegetation information for the preindustrial period and the uncertainties in describing SOA formation are two leading factors preventing simulation of SOA.This study calculated the online emissions of biogenic volatile organic compounds(VOCs)in the Aerosol and Atmospheric Chemistry Model of the Institute of Atmospheric Physics(IAP-AACM)by coupling the Model of Emissions of Gases and Aerosols from Nature(MEGAN),where the input vegetation parameters were simulated by the IAP Dynamic Global Vegetation Model(IAP-DGVM).The volatility basis set(VBS)approach was adopted to simulate SOA formation from the nontraditional pathways,i.e.,the oxidation of intermediate VOCs and aging of primary organic aerosol.Although biogenic SOAs(BSOAs)were dominant in SOAs globally in the preindustrial period,the contribution of nontraditional anthropogenic SOAs(ASOAs)to the total SOAs was up to 35.7%.In the present day,the contribution of ASOAs was 2.8 times larger than that in the preindustrial period.The contribution of nontraditional sources of SOAs to SOA was as high as 53.1%.The influence of increased anthropogenic emissions in the present day on BSOA concentrations was greater than that of increased biogenic emission changes.The response of BSOA concentrations to anthropogenic emission changes in the present day was more sensitive than that in the preindustrial period.The nontraditional sources and the atmospheric oxidation capability greatly affect the global SOA change.展开更多
Water-soluble inorganic ions(WSIIs)play a pivotal role in atmospheric chemical reactions,particularly influencing the formation of secondary particulate matter.A comprehensive grasp of the vertical distribution of atm...Water-soluble inorganic ions(WSIIs)play a pivotal role in atmospheric chemical reactions,particularly influencing the formation of secondary particulate matter.A comprehensive grasp of the vertical distribution of atmospheric pollutants holds immense significance in understanding the diffusion and transportation of these pollutants.This study investigates the WSIIs of PM_(2.5)and size-segregated particles at the top(~2060 m a.s.l.)and foot of Mt.Hua during the winter of 2020.All the measured ions present significant higher concentrations(1.9~6.9 times)at the foot than the top.Cl^(-)and K^(+)at the foot are more than 4 times of those at the top,whereas Ca^(2+)and Mg^(2+)are only 1.3-1.9 times higher.The particle size distribution of NO_(3)^(-),SO_(4)^(2-),K^(+)and Cl^(-)demonstrate a single peak distribution(0.7-1.1μm)at the foot,but with a bimodal distribution(0.7-1.1μm and 4.7-5.8μm)at the top.These differences suggest that the aerosol at the alpine region is mainly transported via long-distance from Northwest/North China,but limited influenced by vertical transport through valley breeze.The changes of concentration and size distribution of WSIIs in dust event and non-dust period indicate that the effects of dust event on aerosols at ground surface were weaker than that of the free troposphere of Guanzhong Plain.Notably,our study underscores the dominant influence of NO_(3)^(-)in shaping the gas-particle distribution of ammonia within the winter free troposphere.Our results highlight the significant role of long-range transport on aerosols in the free troposphere in Guanzhong Plain,Northwest China.展开更多
During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris...During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris from the reactor building,the resolidified debris must be cut into smaller pieces using various cutting methods.During the cutting process,aerosol particles are expected to be generated at the submicron scale.It has been noted that such aerosols sizing within the Greenfield gap(0.1-1μm)are difficult to remove effectively using traditional spraying methods.Therefore,to improve the aerosol removal efficiency of the spray system,a new aerosol agglomeration method was recently proposed,which involves injecting water mist to enlarge the sizes of the aerosol particles before removing them using water sprays.In this study,a series of experiments were performed to clarify the proper spray configurations for effective aerosol scavenging and to improve the performance of the water mist.The experimental results showed that the spray flow rate and droplet characteristics are important factors for the aerosol-scavenging efficiency and performance of the water mist.The results obtained from this study will be helpful for the optimization of the spray system design for effective aerosol scavenging during the decommissioning of the Fukushima Daiichi plant.展开更多
Organic matter is crucial in aerosol-climate interactions,yet the physicochemical properties and origins of organic aerosols remain poorly understood.Here we show the seasonal characteristics of submicron organic aero...Organic matter is crucial in aerosol-climate interactions,yet the physicochemical properties and origins of organic aerosols remain poorly understood.Here we show the seasonal characteristics of submicron organic aerosols in Arctic Svalbard during spring and summer,emphasizing their connection to transport patterns and particle size distribution.Microbial-derived organic matter(MOM)and terrestrial-derived organic matter(TOM)accounted for over 90%of the total organic mass in Arctic aerosols during these seasons,comprising carbohydrate/protein-like and lignin/tannin-like compounds,respectively.In spring,aerosols showed high TOM and low MOM intensities due to biomass-burning influx in the central Arctic.In contrast,summer exhibited elevated MOM intensity,attributed to the shift in predominant atmospheric transport from the central Arctic to the biologically active Greenland Sea.MOM and TOM were associated with Aitken mode particles(<100 nm diameter)and accumulation mode particles(>100 nm diameter),respectively.This association is linked to the molecular size of biomolecules,impacting the number concentrations of corresponding aerosol classes.These findings highlight the importance of considering seasonal atmospheric transport patterns and organic source-dependent particle size distributions in assessing aerosol properties in the changing Arctic.展开更多
Aerosol deposition(AD)method is a kind of additive manufacturing technology for fabricating dense films such as metals and ceramics at room temperature.It resolves the challenge of integrating ceramic films onto tempe...Aerosol deposition(AD)method is a kind of additive manufacturing technology for fabricating dense films such as metals and ceramics at room temperature.It resolves the challenge of integrating ceramic films onto temperaturesensitive substrates,including metals,glasses,and polymers.It should be emphasized that the AD is a spray coating technology that uses powder without thermal assistance to generate films with high density.Compared to the traditional sputter-based approach,the AD shows several advantages in efficiency,convenience,better interfacial bonding and so on.Therefore,it opens some possibilities to the field of batteries,especially all-solidstate batteries(ASSBs)and draws much attention not only for research but also for large scale applications.The purpose of this work is to provide a critical review on the science and technology of AD as well as its applications in the field of batteries.The process,mechanism and effective parameters of AD,and recent developments in AD applications in the field of batteries will be systematically reviewed so that a trend for AD will be finally provided.展开更多
The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral b...The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.展开更多
In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitori...In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitoring of aerosols in Burkina Faso. To this end, a comparison of AOD between satellite observations and in situ measurements at the Ouagadougou site reveals an underestimation of AERONET AOD except for OMI which overestimates them. Also, an inter-comparison done based on the linear regression line representation shows the correlation between the aerosol models incorporated in the airborne sensor inversion algorithms and the aerosol population probed. This can be seen through the correlation coefficients R which are 0.84, 0.64, 0.55 and 0.054 for MODIS, SeaWiFS, MISR and OMI respectively. Furthermore, an optical analysis of aerosols in Burkina Faso by the MODIS sensor from 2001 to 2016 indicates a large spatial and temporal variability of particles strongly dominated by desert dust. This is corroborated by the annual and seasonal cycles of the AOD at 550 nm and the Angström coefficient measured in the spectral range between 412 nm and 470 nm. A zoom on a few sites chosen according to the three climatic zones confirms the majority presence of mineral aerosols in Burkina Faso, whose maxima are observed in spring and summer.展开更多
The authors report the results of aethalometer black carbon(BC)aerosol measurements carried out over a rural(pristine)site,Panchgaon,Haryana State,India during the winter months of 2021-2022 and 2022-2023.They are com...The authors report the results of aethalometer black carbon(BC)aerosol measurements carried out over a rural(pristine)site,Panchgaon,Haryana State,India during the winter months of 2021-2022 and 2022-2023.They are compared with collocated and concurrent observations from the Air Quality Monitoring Station(AQMS),which provides synchronous air pollution and surface meteorological parameters.Secular variations in BC mass concentration are studied and explained with variations in local meteorological parameters.The biomass burning fire count retrievals from NASA-NOAA VIIRS satellite,and backward airmass trajectories from NOAA-ERL HYSPLIT Model analysis have also been utilized to explain the findings.They reveal that the north-west Indian region contributes maximum to the BC mass concentration over the study site during the study period.Moreover,the observed BC mass concentrations corroborate the synchronous fire count,primary and secondary pollutant concentrations.The results were found to aid the development of mitigation methods to achieve a sustainable climate system.展开更多
The ultraviolet aerosol index(UVAI) is essential for monitoring the absorbing aerosols during aerosol events. UVAI depends on the absorbing aerosol concentration, the viewing geometry, and the temporal drift of radiom...The ultraviolet aerosol index(UVAI) is essential for monitoring the absorbing aerosols during aerosol events. UVAI depends on the absorbing aerosol concentration, the viewing geometry, and the temporal drift of radiometric sensitivity. To efficiently detect absorbing aerosols with the highest precision and to improve the accuracy of long-term UVAI estimates,the background UVAI must be examined through the UVAI retrieval. This study presents a statistical method that calculates the background value of UVAI using TROPOspheric Monitoring Instrument(TROPOMI) observation data over the Pacific Ocean under clear-sky scenes. Radiative transfer calculations were performed to simulate the dependence of UVAI on aerosol type and viewing geometry. We firstly applied the background UVAI to reducing the effects of viewing geometry and the degradation of the TROPOMI irradiance measurements on the UVAI. The temporal variability of the background UVAI under the same viewing geometry and aerosol concentration was identified. Radiative transfer calculations were performed to study the changes in background UVAI using Aerosol Optical Depth from the Moderate Resolution Imaging Spectroradiometer(MODIS) and reflectance measurements from TROPOMI as input. The trends of the temporal variations in the background UVAI agreed with the simulations. Alterations in the background UVAI expressed the reflectance variations driven by the changes in satellite state. Decreasing trends in solar irradiance at 340 and 380 nm due to instrument degradation were identified. Our findings are valuable because they can be applied to future retrievals of UVAI from the Environmental Trace Gases Monitoring Instrument(EMI) onboard the Chinese GaoFen-5 satellite.展开更多
Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Mult...Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrieved aerosol optical depth (AOD) data were examined for changes in AOD from period 1 (P1, 2006-2012) to period 2 (P2, 2014-2020 (P2). Herein, AOD was statistically analyzed on a 0.25° × 0.25° grid and in the airsheds over the various ocean basins over the Arctic north of 59.75°N. According to heatmaps of the correlation between AOD and ship traffic, and AOD and fire emissions for the airsheds, all three AOD products captured the observed inter-annual variability in wildfire occurrence well, and showed wildfire emissions over Siberia were more severe in P2 than P1. Except for the Atlantic, North, and Baltic Seas, Beaufort Sea, and Barents Sea, all three AOD products indicated that AOD was higher over the various basins in P2 than P1, but disagreed on the magnitude. This fact suggests that the detection of changes in the typical low AOD over the Arctic Ocean might be rather qualitative than quantitative. While all products captured increases in AOD due to ships at berth, only MODIS C6.1 caught the elevated AOD due to shipping on the Siberian rivers. Obviously, sub-daily resolutions are required to capture increased AOD due to short-term events like a traveling ship or short-interval fire.展开更多
Radon is the most important source of natural radiation to human beings and the second major causative agent of lung cancer other than smoking. In recent years, the hazards of human exposure to thoron (Rn-220), anothe...Radon is the most important source of natural radiation to human beings and the second major causative agent of lung cancer other than smoking. In recent years, the hazards of human exposure to thoron (Rn-220), another isotope of radon, and its progeny have gained consensus. To accurately evaluate the dose level and hazards of Rn-220 and its progeny, a standard Rn-220 chamber with strong regulation ability for Rn-220 and its progeny needs to be established for the scale or calibration of measurement instruments. This paper describes the hazards, sources, behavioral characteristics of Rn-220 and its progeny, and some representative Rn-220 chambers established in various countries.展开更多
The coronavirus disease 2019(COVID-19)pandemic caused by frequently mutating severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has had a worldwide impact.However,detailed data on the potential aerosol transmi...The coronavirus disease 2019(COVID-19)pandemic caused by frequently mutating severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has had a worldwide impact.However,detailed data on the potential aerosol transmission of SARS-CoV-2 in real-world and controlled laboratory settings remain sparse.During the COVID-19 pandemic in Shanghai,China in 2022,samples were collected in a Fangcang shelter hospital,a large-scale temporary hospital rapidly built by converting the existing National Exhibition and Convention Center(Shanghai)into a health care facility.Aerosol samples at different sites and intervals around patients and in public areas,surface samples,and pharyngeal swab samples from corresponding patients were included.Samples were tested for SARS-CoV-2 using real-time quantitative polymerase chain reaction(RT-qPCR)assays,followed by sequencing if the cycle threshold(Ct)value was<30.The positivity rate for SARS-CoV-2 in aerosol samples was high in contaminated zones(37.5%,104/277),especially around the bed(41.2%,68/165)and near ventilation inlets(45.2%,14/31).The prevalence of SARS-CoV-2 around the bed,public areas,and air inlets of exhaust vents fluctuated and was closely related to the positivity rate among patients at corresponding sampling sites.Some surface samples of different personal protective equipment from medical staff had high positivity rates.Sixty sequences of joined ORF1ab and spike genes obtained from sixty samples represented two main clusters of Omicron SARS-CoV-2.There was consistency in virus sequences from the same patient and their environment,and the detected virus sequences matched those of virus strains in circulation during the collection periods,which indicated a high likelihood of cross-contamination in the Fangcang shelter hospital.In summary,the results provide a quantitative and real landscape of the aerosol transmission of SARS-CoV-2 and a patient-centered view of contamination in large and enclosed spaces and offer a useful guide for taking targeted measures to avoid nosocomial infections during the management of SARS-CoV-2 or other respiratory virus diseases in a Fangcang shelter hospital.展开更多
Contaminated or infected patients present a risk of cross-contamination for emergency responders, attending medical personnel and medical facilities as they enter a treatment facility. The controlled conditions of an ...Contaminated or infected patients present a risk of cross-contamination for emergency responders, attending medical personnel and medical facilities as they enter a treatment facility. The controlled conditions of an aerosol test chamber are required to examine factors of contamination, decontamination, and cross-contamination. This study presents the design, construction, and a method for characterizing an aerosol test chamber for a full-sized manikin on a standard North Atlantic Treaty Organization litter. The methodology combined air velocity measurements, aerosol particle counts and size distributions, and computational fluid dynamics modeling to describe the chamber’s performance in three dimensions. This detailed characterization facilitates future experimental design by predicting chamber performance for a variety of patient-focused research.展开更多
BACKGROUND Transmission of severe acute respiratory syndrome coronavirus 2 can occur during aerosol generating procedures.Several steps in spinal fusion may aerosolize blood but little data exists to quantify the risk...BACKGROUND Transmission of severe acute respiratory syndrome coronavirus 2 can occur during aerosol generating procedures.Several steps in spinal fusion may aerosolize blood but little data exists to quantify the risk this may confer upon surgeons.Aerosolized particles containing infectious coronavirus are typically 0.5-8.0μm.AIM To measure the generation of aerosols during spinal fusion using a handheld optical particle sizer(OPS).METHODS We quantified airborne particle counts during five posterior spinal instrumentation and fusions(9/22/2020-10/15/2020)using an OPS near the surgical field.Data were analyzed by 3 particle size groups:0.3-0.5μm/m^(3),1.0-5.0μm/m^(3),and 10.0μm/m^(3).We used hierarchical logistic regression to model the odds of a spike in aerosolized particle counts based on the step in progress.A spike was defined as a>3 standard deviation increase from average baseline levels.RESULTS Upon univariate analysis,bovie(P<0.0001),high speed pneumatic burring(P=0.009),and ultrasonic bone scalpel(P=0.002)were associated with increased 0.3-0.5μm/m^(3)particle counts relative to baseline.Bovie(P<0.0001)and burring(P<0.0001)were also associated with increased 1-5μm/m^(3)and 10μm/m^(3)particle counts.Pedicle drilling was not associated with increased particle counts in any of the size ranges measured.Our logistic regression model demonstrated that bovie(OR=10.2,P<0.001),burring(OR=10.9,P<0.001),and bone scalpel(OR=5.9,P<0.001)had higher odds of a spike in 0.3-0.5μm/m^(3)particle counts.Bovie(OR=2.6,P<0.001),burring(OR=5.8,P<0.001),and bone scalpel(OR=4.3,P=0.005)had higher odds of a spike in 1-5μm/m^(3)particle counts.Bovie(OR=0.3,P<0.001)and drilling(OR=0.2,P=0.011)had significantly lower odds of a spike in 10μm/m^(3)particle counts relative to baseline.CONCLUSION Several steps in spinal fusion are associated with increased airborne particle counts in the aerosol size range.Further research is warranted to determine if such particles have the potential to contain infectious viruses.Previous research has shown that electrocautery smoke may be an inhalation hazard for surgeons but here we show that usage of the bone scalpel and high-speed burr also have the potential to aerosolize blood.展开更多
The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which ...The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which are afterwards sublimated, and to examine the particles remaining after evaporation. The procedure takes into account only crystal with a maximum diameter of 20 μm, by assuming that small crystals do not scavenge aerosol during growth, and therefore that crystals contain only the effective nucleating particles. This assumption is questionable, however, as experiments have shown that even small ice crystals can scavenge aerosol. Another approach has been to compare the number and elemental composition of residual particles in small ice crystals and of aerosol near the cloud. By considering as example soot and black carbon aerosol, contradictory conclusions on their importance in the processes of ice nucleation have been reported in the literature. We suggest that, in addition to physico-chemical properties of soot/carbon aerosol particles, even the microphysical and environmental parameters involved in the transition of aerosol from gas phase to ice crystals in cloud should be considered. The contribution of phoretic forces should also be considered. After initial growth ice crystals can continue to grow by water vapour diffusion. Laboratory experiments confirm the contribution of diffusiophoresis with Stefan flow in the scavenging by snow crystals up to 3 mm in diameter. The particle scavenging efficiency of snow crystals is related to crystalline shape and depends on air relative humidity and temperature.展开更多
基金jointly supported by the National Key Research and Development Program of China(Grant No.2022YFE0106500)Jiangsu Science Fund for Distinguished Young Scholars(Grant No.BK20200040)。
文摘The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming.
基金Project supported by the National Natural Science Foundation of China (Grant No.12064034)the Leading Talents Program of Science and Technology Innovation in Ningxia Hui Autonomous Region,China (Grant No.2020GKLRLX08)+2 种基金the Natural Science Foundation of Ningxia Hui Auatonomous Region,China (Grant Nos.2022AAC03643,2022AAC03117,and 2018AAC03029)the Major Science and Technology Project of Ningxia Hui Autonomous Region,China (Grant No.2022BDE03006)the Natural Science Project of the Higher Education Institutions of Ningxia Hui Autonomous Region,China (Grant No.13-1069)。
文摘High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles.
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
基金supported by the National Natural Science Foundation of China(Grant Nos.42022038,and 42090030).
文摘Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0607801)the National Natural Science Foundation of China(Grant Nos.42007199 and 42377105)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”.
文摘Quantifying differences in secondary organic aerosols(SOAs)between the preindustrial period and the present day is crucial to assess climate forcing and environmental effects resulting from anthropogenic activities.The lack of vegetation information for the preindustrial period and the uncertainties in describing SOA formation are two leading factors preventing simulation of SOA.This study calculated the online emissions of biogenic volatile organic compounds(VOCs)in the Aerosol and Atmospheric Chemistry Model of the Institute of Atmospheric Physics(IAP-AACM)by coupling the Model of Emissions of Gases and Aerosols from Nature(MEGAN),where the input vegetation parameters were simulated by the IAP Dynamic Global Vegetation Model(IAP-DGVM).The volatility basis set(VBS)approach was adopted to simulate SOA formation from the nontraditional pathways,i.e.,the oxidation of intermediate VOCs and aging of primary organic aerosol.Although biogenic SOAs(BSOAs)were dominant in SOAs globally in the preindustrial period,the contribution of nontraditional anthropogenic SOAs(ASOAs)to the total SOAs was up to 35.7%.In the present day,the contribution of ASOAs was 2.8 times larger than that in the preindustrial period.The contribution of nontraditional sources of SOAs to SOA was as high as 53.1%.The influence of increased anthropogenic emissions in the present day on BSOA concentrations was greater than that of increased biogenic emission changes.The response of BSOA concentrations to anthropogenic emission changes in the present day was more sensitive than that in the preindustrial period.The nontraditional sources and the atmospheric oxidation capability greatly affect the global SOA change.
基金supported by the program from National Natural Science Foundation of China(Nos.42207555,41977332)Natural Science Basic Research Program of Shaanxi(Nos.2021JQ-971,2022JQ-242)+2 种基金Open Foundation of SKLLQG(No.SKLLQGZR2101)Strategic Priority Research Program of CAS(No.XDB40000000)the support of the Youth Innovation Promotion Association CAS(No.2020407)。
文摘Water-soluble inorganic ions(WSIIs)play a pivotal role in atmospheric chemical reactions,particularly influencing the formation of secondary particulate matter.A comprehensive grasp of the vertical distribution of atmospheric pollutants holds immense significance in understanding the diffusion and transportation of these pollutants.This study investigates the WSIIs of PM_(2.5)and size-segregated particles at the top(~2060 m a.s.l.)and foot of Mt.Hua during the winter of 2020.All the measured ions present significant higher concentrations(1.9~6.9 times)at the foot than the top.Cl^(-)and K^(+)at the foot are more than 4 times of those at the top,whereas Ca^(2+)and Mg^(2+)are only 1.3-1.9 times higher.The particle size distribution of NO_(3)^(-),SO_(4)^(2-),K^(+)and Cl^(-)demonstrate a single peak distribution(0.7-1.1μm)at the foot,but with a bimodal distribution(0.7-1.1μm and 4.7-5.8μm)at the top.These differences suggest that the aerosol at the alpine region is mainly transported via long-distance from Northwest/North China,but limited influenced by vertical transport through valley breeze.The changes of concentration and size distribution of WSIIs in dust event and non-dust period indicate that the effects of dust event on aerosols at ground surface were weaker than that of the free troposphere of Guanzhong Plain.Notably,our study underscores the dominant influence of NO_(3)^(-)in shaping the gas-particle distribution of ammonia within the winter free troposphere.Our results highlight the significant role of long-range transport on aerosols in the free troposphere in Guanzhong Plain,Northwest China.
基金financially supported by the Nuclear Energy Science and Technology and Human Resource Development Project of the Japan Atomic Energy Agency/Collaborative Laboratories for Advanced Decommissioning Science(No.R04I034)Ruicong Xu appreciates the scholarship(financial support)from the Chinese Scholarship Council(CSC No.202106380073).
文摘During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris from the reactor building,the resolidified debris must be cut into smaller pieces using various cutting methods.During the cutting process,aerosol particles are expected to be generated at the submicron scale.It has been noted that such aerosols sizing within the Greenfield gap(0.1-1μm)are difficult to remove effectively using traditional spraying methods.Therefore,to improve the aerosol removal efficiency of the spray system,a new aerosol agglomeration method was recently proposed,which involves injecting water mist to enlarge the sizes of the aerosol particles before removing them using water sprays.In this study,a series of experiments were performed to clarify the proper spray configurations for effective aerosol scavenging and to improve the performance of the water mist.The experimental results showed that the spray flow rate and droplet characteristics are important factors for the aerosol-scavenging efficiency and performance of the water mist.The results obtained from this study will be helpful for the optimization of the spray system design for effective aerosol scavenging during the decommissioning of the Fukushima Daiichi plant.
基金National Research Foundation(NRF)of Korea NRF-2021M1A5A1065425(KOPRI-PN24011)The FT-ICR MS analysis was supported by the Korea Basic Science Institute under the R&D program(Project No.C330430)supervised by the Ministry of Science and ICT.
文摘Organic matter is crucial in aerosol-climate interactions,yet the physicochemical properties and origins of organic aerosols remain poorly understood.Here we show the seasonal characteristics of submicron organic aerosols in Arctic Svalbard during spring and summer,emphasizing their connection to transport patterns and particle size distribution.Microbial-derived organic matter(MOM)and terrestrial-derived organic matter(TOM)accounted for over 90%of the total organic mass in Arctic aerosols during these seasons,comprising carbohydrate/protein-like and lignin/tannin-like compounds,respectively.In spring,aerosols showed high TOM and low MOM intensities due to biomass-burning influx in the central Arctic.In contrast,summer exhibited elevated MOM intensity,attributed to the shift in predominant atmospheric transport from the central Arctic to the biologically active Greenland Sea.MOM and TOM were associated with Aitken mode particles(<100 nm diameter)and accumulation mode particles(>100 nm diameter),respectively.This association is linked to the molecular size of biomolecules,impacting the number concentrations of corresponding aerosol classes.These findings highlight the importance of considering seasonal atmospheric transport patterns and organic source-dependent particle size distributions in assessing aerosol properties in the changing Arctic.
基金supported by National University of Singapore (Chongqing) Research InstituteNational University of Singapore+2 种基金Chongqing Postdoctoral Research Special FundingOverseas Postdoctoral Research Start-up FundingNatural Science Foundation of Chongqing, China (cstc2021jcyj-msxmX0086)
文摘Aerosol deposition(AD)method is a kind of additive manufacturing technology for fabricating dense films such as metals and ceramics at room temperature.It resolves the challenge of integrating ceramic films onto temperaturesensitive substrates,including metals,glasses,and polymers.It should be emphasized that the AD is a spray coating technology that uses powder without thermal assistance to generate films with high density.Compared to the traditional sputter-based approach,the AD shows several advantages in efficiency,convenience,better interfacial bonding and so on.Therefore,it opens some possibilities to the field of batteries,especially all-solidstate batteries(ASSBs)and draws much attention not only for research but also for large scale applications.The purpose of this work is to provide a critical review on the science and technology of AD as well as its applications in the field of batteries.The process,mechanism and effective parameters of AD,and recent developments in AD applications in the field of batteries will be systematically reviewed so that a trend for AD will be finally provided.
基金supported by the National Natural Science of Foundation of China(41825011,42030608,42105128,and 42075079)the Opening Foundation of Key Laboratory of Atmospheric Sounding,the CMA and the CMA Research Center on Meteorological Observation Engineering Technology(U2021Z03).
文摘The Advanced Geosynchronous Radiation Imager(AGRI)is a mission-critical instrument for the Fengyun series of satellites.AGRI acquires full-disk images every 15 min and views East Asia every 5 min through 14 spectral bands,enabling the detection of highly variable aerosol optical depth(AOD).Quantitative retrieval of AOD has hitherto been challenging,especially over land.In this study,an AOD retrieval algorithm is proposed that combines deep learning and transfer learning.The algorithm uses core concepts from both the Dark Target(DT)and Deep Blue(DB)algorithms to select features for the machinelearning(ML)algorithm,allowing for AOD retrieval at 550 nm over both dark and bright surfaces.The algorithm consists of two steps:①A baseline deep neural network(DNN)with skip connections is developed using 10 min Advanced Himawari Imager(AHI)AODs as the target variable,and②sunphotometer AODs from 89 ground-based stations are used to fine-tune the DNN parameters.Out-of-station validation shows that the retrieved AOD attains high accuracy,characterized by a coefficient of determination(R2)of 0.70,a mean bias error(MBE)of 0.03,and a percentage of data within the expected error(EE)of 70.7%.A sensitivity study reveals that the top-of-atmosphere reflectance at 650 and 470 nm,as well as the surface reflectance at 650 nm,are the two largest sources of uncertainty impacting the retrieval.In a case study of monitoring an extreme aerosol event,the AGRI AOD is found to be able to capture the detailed temporal evolution of the event.This work demonstrates the superiority of the transfer-learning technique in satellite AOD retrievals and the applicability of the retrieved AGRI AOD in monitoring extreme pollution events.
文摘In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitoring of aerosols in Burkina Faso. To this end, a comparison of AOD between satellite observations and in situ measurements at the Ouagadougou site reveals an underestimation of AERONET AOD except for OMI which overestimates them. Also, an inter-comparison done based on the linear regression line representation shows the correlation between the aerosol models incorporated in the airborne sensor inversion algorithms and the aerosol population probed. This can be seen through the correlation coefficients R which are 0.84, 0.64, 0.55 and 0.054 for MODIS, SeaWiFS, MISR and OMI respectively. Furthermore, an optical analysis of aerosols in Burkina Faso by the MODIS sensor from 2001 to 2016 indicates a large spatial and temporal variability of particles strongly dominated by desert dust. This is corroborated by the annual and seasonal cycles of the AOD at 550 nm and the Angström coefficient measured in the spectral range between 412 nm and 470 nm. A zoom on a few sites chosen according to the three climatic zones confirms the majority presence of mineral aerosols in Burkina Faso, whose maxima are observed in spring and summer.
文摘The authors report the results of aethalometer black carbon(BC)aerosol measurements carried out over a rural(pristine)site,Panchgaon,Haryana State,India during the winter months of 2021-2022 and 2022-2023.They are compared with collocated and concurrent observations from the Air Quality Monitoring Station(AQMS),which provides synchronous air pollution and surface meteorological parameters.Secular variations in BC mass concentration are studied and explained with variations in local meteorological parameters.The biomass burning fire count retrievals from NASA-NOAA VIIRS satellite,and backward airmass trajectories from NOAA-ERL HYSPLIT Model analysis have also been utilized to explain the findings.They reveal that the north-west Indian region contributes maximum to the BC mass concentration over the study site during the study period.Moreover,the observed BC mass concentrations corroborate the synchronous fire count,primary and secondary pollutant concentrations.The results were found to aid the development of mitigation methods to achieve a sustainable climate system.
文摘The ultraviolet aerosol index(UVAI) is essential for monitoring the absorbing aerosols during aerosol events. UVAI depends on the absorbing aerosol concentration, the viewing geometry, and the temporal drift of radiometric sensitivity. To efficiently detect absorbing aerosols with the highest precision and to improve the accuracy of long-term UVAI estimates,the background UVAI must be examined through the UVAI retrieval. This study presents a statistical method that calculates the background value of UVAI using TROPOspheric Monitoring Instrument(TROPOMI) observation data over the Pacific Ocean under clear-sky scenes. Radiative transfer calculations were performed to simulate the dependence of UVAI on aerosol type and viewing geometry. We firstly applied the background UVAI to reducing the effects of viewing geometry and the degradation of the TROPOMI irradiance measurements on the UVAI. The temporal variability of the background UVAI under the same viewing geometry and aerosol concentration was identified. Radiative transfer calculations were performed to study the changes in background UVAI using Aerosol Optical Depth from the Moderate Resolution Imaging Spectroradiometer(MODIS) and reflectance measurements from TROPOMI as input. The trends of the temporal variations in the background UVAI agreed with the simulations. Alterations in the background UVAI expressed the reflectance variations driven by the changes in satellite state. Decreasing trends in solar irradiance at 340 and 380 nm due to instrument degradation were identified. Our findings are valuable because they can be applied to future retrievals of UVAI from the Environmental Trace Gases Monitoring Instrument(EMI) onboard the Chinese GaoFen-5 satellite.
文摘Due to the recent increase in Arctic shipping, 2006-2020 June to October Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 (C6.1), and Multi-Angle Implementation of Atmospheric Correction (MAIAC) retrieved aerosol optical depth (AOD) data were examined for changes in AOD from period 1 (P1, 2006-2012) to period 2 (P2, 2014-2020 (P2). Herein, AOD was statistically analyzed on a 0.25° × 0.25° grid and in the airsheds over the various ocean basins over the Arctic north of 59.75°N. According to heatmaps of the correlation between AOD and ship traffic, and AOD and fire emissions for the airsheds, all three AOD products captured the observed inter-annual variability in wildfire occurrence well, and showed wildfire emissions over Siberia were more severe in P2 than P1. Except for the Atlantic, North, and Baltic Seas, Beaufort Sea, and Barents Sea, all three AOD products indicated that AOD was higher over the various basins in P2 than P1, but disagreed on the magnitude. This fact suggests that the detection of changes in the typical low AOD over the Arctic Ocean might be rather qualitative than quantitative. While all products captured increases in AOD due to ships at berth, only MODIS C6.1 caught the elevated AOD due to shipping on the Siberian rivers. Obviously, sub-daily resolutions are required to capture increased AOD due to short-term events like a traveling ship or short-interval fire.
文摘Radon is the most important source of natural radiation to human beings and the second major causative agent of lung cancer other than smoking. In recent years, the hazards of human exposure to thoron (Rn-220), another isotope of radon, and its progeny have gained consensus. To accurately evaluate the dose level and hazards of Rn-220 and its progeny, a standard Rn-220 chamber with strong regulation ability for Rn-220 and its progeny needs to be established for the scale or calibration of measurement instruments. This paper describes the hazards, sources, behavioral characteristics of Rn-220 and its progeny, and some representative Rn-220 chambers established in various countries.
基金supported by National Key Research and Development Program of China(2019YFC1200500)supported by Emergency Key Program of Guangzhou Laboratory(EKPG21-01)supported by National Natural Science Foundation of China(32070166)。
文摘The coronavirus disease 2019(COVID-19)pandemic caused by frequently mutating severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has had a worldwide impact.However,detailed data on the potential aerosol transmission of SARS-CoV-2 in real-world and controlled laboratory settings remain sparse.During the COVID-19 pandemic in Shanghai,China in 2022,samples were collected in a Fangcang shelter hospital,a large-scale temporary hospital rapidly built by converting the existing National Exhibition and Convention Center(Shanghai)into a health care facility.Aerosol samples at different sites and intervals around patients and in public areas,surface samples,and pharyngeal swab samples from corresponding patients were included.Samples were tested for SARS-CoV-2 using real-time quantitative polymerase chain reaction(RT-qPCR)assays,followed by sequencing if the cycle threshold(Ct)value was<30.The positivity rate for SARS-CoV-2 in aerosol samples was high in contaminated zones(37.5%,104/277),especially around the bed(41.2%,68/165)and near ventilation inlets(45.2%,14/31).The prevalence of SARS-CoV-2 around the bed,public areas,and air inlets of exhaust vents fluctuated and was closely related to the positivity rate among patients at corresponding sampling sites.Some surface samples of different personal protective equipment from medical staff had high positivity rates.Sixty sequences of joined ORF1ab and spike genes obtained from sixty samples represented two main clusters of Omicron SARS-CoV-2.There was consistency in virus sequences from the same patient and their environment,and the detected virus sequences matched those of virus strains in circulation during the collection periods,which indicated a high likelihood of cross-contamination in the Fangcang shelter hospital.In summary,the results provide a quantitative and real landscape of the aerosol transmission of SARS-CoV-2 and a patient-centered view of contamination in large and enclosed spaces and offer a useful guide for taking targeted measures to avoid nosocomial infections during the management of SARS-CoV-2 or other respiratory virus diseases in a Fangcang shelter hospital.
文摘Contaminated or infected patients present a risk of cross-contamination for emergency responders, attending medical personnel and medical facilities as they enter a treatment facility. The controlled conditions of an aerosol test chamber are required to examine factors of contamination, decontamination, and cross-contamination. This study presents the design, construction, and a method for characterizing an aerosol test chamber for a full-sized manikin on a standard North Atlantic Treaty Organization litter. The methodology combined air velocity measurements, aerosol particle counts and size distributions, and computational fluid dynamics modeling to describe the chamber’s performance in three dimensions. This detailed characterization facilitates future experimental design by predicting chamber performance for a variety of patient-focused research.
文摘BACKGROUND Transmission of severe acute respiratory syndrome coronavirus 2 can occur during aerosol generating procedures.Several steps in spinal fusion may aerosolize blood but little data exists to quantify the risk this may confer upon surgeons.Aerosolized particles containing infectious coronavirus are typically 0.5-8.0μm.AIM To measure the generation of aerosols during spinal fusion using a handheld optical particle sizer(OPS).METHODS We quantified airborne particle counts during five posterior spinal instrumentation and fusions(9/22/2020-10/15/2020)using an OPS near the surgical field.Data were analyzed by 3 particle size groups:0.3-0.5μm/m^(3),1.0-5.0μm/m^(3),and 10.0μm/m^(3).We used hierarchical logistic regression to model the odds of a spike in aerosolized particle counts based on the step in progress.A spike was defined as a>3 standard deviation increase from average baseline levels.RESULTS Upon univariate analysis,bovie(P<0.0001),high speed pneumatic burring(P=0.009),and ultrasonic bone scalpel(P=0.002)were associated with increased 0.3-0.5μm/m^(3)particle counts relative to baseline.Bovie(P<0.0001)and burring(P<0.0001)were also associated with increased 1-5μm/m^(3)and 10μm/m^(3)particle counts.Pedicle drilling was not associated with increased particle counts in any of the size ranges measured.Our logistic regression model demonstrated that bovie(OR=10.2,P<0.001),burring(OR=10.9,P<0.001),and bone scalpel(OR=5.9,P<0.001)had higher odds of a spike in 0.3-0.5μm/m^(3)particle counts.Bovie(OR=2.6,P<0.001),burring(OR=5.8,P<0.001),and bone scalpel(OR=4.3,P=0.005)had higher odds of a spike in 1-5μm/m^(3)particle counts.Bovie(OR=0.3,P<0.001)and drilling(OR=0.2,P=0.011)had significantly lower odds of a spike in 10μm/m^(3)particle counts relative to baseline.CONCLUSION Several steps in spinal fusion are associated with increased airborne particle counts in the aerosol size range.Further research is warranted to determine if such particles have the potential to contain infectious viruses.Previous research has shown that electrocautery smoke may be an inhalation hazard for surgeons but here we show that usage of the bone scalpel and high-speed burr also have the potential to aerosolize blood.
文摘The role of phoretic forces in the identification of particles acting as ice nuclei in mixed phase cloud is discussed. A method used to identify the effective ice nucleating particles is to sample ice crystals, which are afterwards sublimated, and to examine the particles remaining after evaporation. The procedure takes into account only crystal with a maximum diameter of 20 μm, by assuming that small crystals do not scavenge aerosol during growth, and therefore that crystals contain only the effective nucleating particles. This assumption is questionable, however, as experiments have shown that even small ice crystals can scavenge aerosol. Another approach has been to compare the number and elemental composition of residual particles in small ice crystals and of aerosol near the cloud. By considering as example soot and black carbon aerosol, contradictory conclusions on their importance in the processes of ice nucleation have been reported in the literature. We suggest that, in addition to physico-chemical properties of soot/carbon aerosol particles, even the microphysical and environmental parameters involved in the transition of aerosol from gas phase to ice crystals in cloud should be considered. The contribution of phoretic forces should also be considered. After initial growth ice crystals can continue to grow by water vapour diffusion. Laboratory experiments confirm the contribution of diffusiophoresis with Stefan flow in the scavenging by snow crystals up to 3 mm in diameter. The particle scavenging efficiency of snow crystals is related to crystalline shape and depends on air relative humidity and temperature.