Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar...Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts.展开更多
In order to develop municipal solid waste(MSW) pyrolysis/gasification and melting technology with low emission and high efficiency, it was planed that all the main components in MSW and some typical kinds of MSW wer...In order to develop municipal solid waste(MSW) pyrolysis/gasification and melting technology with low emission and high efficiency, it was planed that all the main components in MSW and some typical kinds of MSW were pyrolyzed/gasified to propose an expert system for raw MSW. In this paper, wood, which was a prevalent component in MSW, was pyrolyzed and gasified in fluidized-bed reactors at different apparent excess air ratios (EARs), temperatures and fluidizing velocities. For pyrolysis, with tem- perature increasing from 400℃ to 700℃, the yield of pyrolysis char decreased while that of pyrolysis gas increased (in this paper respectively from 28% to 20% and from 10% to 35%), and when temperature was 500℃, the yield of pyrolysis tar reached the highest, up to 38% in this paper. It was the optimum for gasification when temperature was 600℃ and apparent EAR was 0.4. Under the experimental conditions of this paper, gasification efficiency achieved 73%, lower heat value(LHV) reached 5800 kJ/(Nm^3) and yield of syngas was 2.01 Nm^3/kg. Lower fluidizing velocity was useful to upgrade gasification efficiency and LHV of syngas for wood gasification. Based on the results, the reactive courses and mechanism were analyzed respectively for wood pyrolysis and gasification.展开更多
The structure of milled wood lignin(MWL), isolated via the Bjrkman procedure, was studied by means of 1H NMR spectroscopy and Fourier transform infrared spectroscopy, and then its pyrolytic product distribution was ...The structure of milled wood lignin(MWL), isolated via the Bjrkman procedure, was studied by means of 1H NMR spectroscopy and Fourier transform infrared spectroscopy, and then its pyrolytic product distribution was investigated on a pyrolysis device. MWL obtained from Manchurian Ash(MA) contained more methoxyl and free phenolic hydroxyl groups per C9 unit than MWL from Mongolian Pine(MP) due to the existence of both guaiacyl and syringyl units, which have a major influence on the pyrolysis behavior of lignin. The results of pyrolysis show that MWL from MA generated a higher yield of bio-oil, mainly composed of phenols, guaiacols, syringols and catechols, and a less yield of char, in addition to the gaseous products CO, CO2, methane and methanol, compared with MWL from MP. Guaiacol and syringol were the typical products from G-lignin and S-lignin, probably attributed to the easier cleavage of the aryl-alkyl linkage in the side chain compared with the C―OCH3 bond in the benzene ring. The degradation of MWL from MP was dominated by the demethylation reaction and the cleavage of aliphatic ―CH2OH at the γ-position, followed by the cracking of the Cα―Cβ and C4―Cα bonds.展开更多
The pyrolysis characteristics of residues of poplar (Populus sp.) wood were investigated using a thermogravimetric analyzer coupled with a Fourier transform infrared (TG-FTIR) spectrometer. The pyrolysis process w...The pyrolysis characteristics of residues of poplar (Populus sp.) wood were investigated using a thermogravimetric analyzer coupled with a Fourier transform infrared (TG-FTIR) spectrometer. The pyrolysis process was sub- divided into four stages at a rate of 10℃.min-1, varying from 30 to 650℃. Below 180℃, a mass loss occurred for drying and preheating the sample and the onset temperature of pyrolysis ranged between 180-260℃. A significant mass loss 3f 61.4 wt.% occurred between 260-380℃, followed by a slow and continuous mass change with lignin devolatilization. The analysis of kinetic reactions showed that the activation energy (78.29 kJ.mol-1) in the low-temperature section was much larger than that (6.40 kJ-mol-1) in the high-temperature section. The evolved gases formed by thermal degradation 3f poplar wood were simultaneously analyzed by FTIR. It was observed from the main peaks that the emissions evolved during poplar wood pyrolysis were acetic acid, carbon dioxide, carbon monoxide, methane, water, some volatile com- 3ounds of esters, alcohols and aldehydes. The emissions gradually increased with rising temperatures before a strong 3eak around 360℃ and then decreased. Most gaseous products were emitted in the 320-380℃ range, while CO2 was =ontinuously emitted in a wide range from 140-550℃.展开更多
Climate change, global warming, and energy crisis are critical issues to be solved urgently in a global framework. Alternative energy and renewable energy technologies must be quickly developed to be substituted for f...Climate change, global warming, and energy crisis are critical issues to be solved urgently in a global framework. Alternative energy and renewable energy technologies must be quickly developed to be substituted for fossil fuels like oil, gases, and coal. USA, UE, and Japan invested huge budgets to develop biomass renewable energy technology. Their target is to develop a commercial base large-scaled plant. On the other hand, in developing countries, especially in rural areas, people who can access electricity is still less than 70%, To decelerate or prevent global warming and improve electrification in rural areas, a new technology for wood pyrolysis, which requires low manufacturing cost and less maintenance, and of which gases are directly applicable to the gas engine generator, is developed in a laboratory scale. This paper reports the performance of this new plant and effects of several parameters on the performance. It is concluded that the new technology is quite feasible in rural areas, and upgrading of the plant is easily possible.展开更多
Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared...Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared temperature detection and smoke identification.Due to the isolation of ground,temperature and smoke characteristics of medium and large smoldering charcoal in some forest soils are not obvious,making it difficult to identify by detection equipment.CO gas is an important detection index for indoor smoldering fire detection,and an important identification feature of hidden smoldering ground fires.However,there is no research on locating smoldering fires through CO detection.We studied the diffusion law of CO gas directly above covered smoldering charcoal as a criterion to design a detection device equipped with multiple CO sensors.According to the motion decomposition search algorithm,the detection device realizes the function of automatically searching for smoldering charcoal.Experimental data shows that the average CO concentration over the covered smoldering charcoal decreases exponentially with increasing height.The size of the search step is related to the reliability of the search algorithm.The detection success corresponding to the small step length is high but the search time is lengthy which can lead to search failure.The introduction of step and rotation factors in search algorithm improves the search efficiency.This study reveals that the average ground CO concentration directly above smoldering charcoal in forests changes with height.Based on this law,a CO gas sensor detection device for hidden smoldering fires has been designed,which enriches the technique of residual fire detection.展开更多
Reconstituted wood panels have several advantages in terms of ease of manufacturing,but their shorter life span results in a huge amount of reconstituted wood panels being discarded in sorting centers yearly.Currently...Reconstituted wood panels have several advantages in terms of ease of manufacturing,but their shorter life span results in a huge amount of reconstituted wood panels being discarded in sorting centers yearly.Currently,the most common approach for dealing with this waste is incineration.In this study,reconstituted wood panels were converted into activated biochar through a two-step thermochemical process:(i)biochar production using pilot scale fast pyrolysis at 250 kg/h and 450℃;and(ii)a physical activation at three temperatures(750℃,850℃ and 950℃)using an in-house activation furnace(1 kg/h).Results showed that the first stage removed about 66% of the nitrogen from the wood panels in the form of NO,NH3,and trimethylamine,which were detected in small amounts compared to emitted CO_(2).Compared to other types of thermochemical conversion methods(e.g.,slow pyrolysis),isocyanic acid and hydrogen cyanide were not detected in this study.The second stage produced activated biochar with a specific surface area of up to 865 m^(2)/g at 950℃.The volatile gases generated during activation were predominantly composed of toluene and benzene.This two-step process resulted in nitrogen-rich carbon in the form of pyrrolic and pyridinic nitrogen.Activated biochars were then evaluated for their SO_(2) retention performance and showed an excellent adsorption capacity of up to 2140 mg/g compared to 65 mg/g for a commercial activated carbon(889 m^(2)/g).End-of-life reconstituted wood panels and SO_(2) gas are problematic issues in Canada where the economy largely revolves around forestry and mining industries.展开更多
Interests in charcoal usage have recently been re-ignited because it is believed that charcoal is a muchbetter fuel than wood. The conventional charcoal production consumes a large amount of energy due to the prolonge...Interests in charcoal usage have recently been re-ignited because it is believed that charcoal is a muchbetter fuel than wood. The conventional charcoal production consumes a large amount of energy due to the prolonged heating time and cooling time which contribute to the process completing in one to several days. Wood py-rolysis consists of both endothermic and exothermic reactions as well as the decomposition of the different components at different temperature range (hemicellulose: 200-260℃; cellulose: 240-350℃ and lignin: 280-500℃). Inthis study we propose a multistagepyrolysis which is an approach to carry out pyrolysis with multiple heating stages so as to gain certain processing benefits. We propose a three-stage approach which includes rapid stepwise heating stage to a variable target temperatures of 250 ℃, 300℃, 350 ℃ and 400 ℃, slow and gradual heatingstage to a tinal temperature of 400℃ and adiabatic with cooling stage. The multi-stage pyrolysis process can save 30% energy and the processing time by using a first temperature target of 300 ℃and heating rate of 5℃.min-1 to produce a fixed-carbon yield of 25.73% as opposed to the base case with a fixed-carbon yield of23.18%.展开更多
The analysis on the feedstock pyrolysis characteristic and the impacts of process parameters on pyrolysis outcomes can assist in the designing,operating and optimizing pyrolysis processes.This work aims to utilize bot...The analysis on the feedstock pyrolysis characteristic and the impacts of process parameters on pyrolysis outcomes can assist in the designing,operating and optimizing pyrolysis processes.This work aims to utilize both experimental and modelling approaches to perform the analysis on three biomass feedstocks—wood sawdust,bamboo shred and Jatropha Curcas seed cake residue,and to provide insights for the design and operation of pyrolysis processes.For the experimental part,the study investigated the effect of heating rate,final pyrolysis temperature and sample size on pyrolysis using common thermal analysis techniques.For the modelling part,a transient mathematical model that integrates the feedstock characteristic from the experimental study was used to simulate the pyrolysis progress of selected biomass feedstock particles for reactor scenarios.The model composes of several sub-models that describe pyrolysis kinetic and heat flow,particle heat transfer,particle shrinking and reactor operation.With better understanding of the effects of process conditions and feedstock characteristics on pyrolysis through both experimental and modelling studies,this work discusses on the considerations of and interrelation between feedstock size,pyrolysis energy usage,processing time and product quality for the design and operation of pyrolysis processes.展开更多
基金supported by the National Natural Science Foundation of China(51876080)the Program for Taishan Scholars of the Shandong Province Government。
文摘Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts.
文摘In order to develop municipal solid waste(MSW) pyrolysis/gasification and melting technology with low emission and high efficiency, it was planed that all the main components in MSW and some typical kinds of MSW were pyrolyzed/gasified to propose an expert system for raw MSW. In this paper, wood, which was a prevalent component in MSW, was pyrolyzed and gasified in fluidized-bed reactors at different apparent excess air ratios (EARs), temperatures and fluidizing velocities. For pyrolysis, with tem- perature increasing from 400℃ to 700℃, the yield of pyrolysis char decreased while that of pyrolysis gas increased (in this paper respectively from 28% to 20% and from 10% to 35%), and when temperature was 500℃, the yield of pyrolysis tar reached the highest, up to 38% in this paper. It was the optimum for gasification when temperature was 600℃ and apparent EAR was 0.4. Under the experimental conditions of this paper, gasification efficiency achieved 73%, lower heat value(LHV) reached 5800 kJ/(Nm^3) and yield of syngas was 2.01 Nm^3/kg. Lower fluidizing velocity was useful to upgrade gasification efficiency and LHV of syngas for wood gasification. Based on the results, the reactive courses and mechanism were analyzed respectively for wood pyrolysis and gasification.
基金Supported by the National High Technology Research and Development Program of China(No.2009AA05Z407)the International Science and Technology Cooperation Program(No.2009DFA61050)+2 种基金the National Natural Science Foundation (No.90610035)the National Basic Research Program of China(No.2007CB210200)the Doctoral Foundation of the Ministry of Education of China(No.20090101110034)
文摘The structure of milled wood lignin(MWL), isolated via the Bjrkman procedure, was studied by means of 1H NMR spectroscopy and Fourier transform infrared spectroscopy, and then its pyrolytic product distribution was investigated on a pyrolysis device. MWL obtained from Manchurian Ash(MA) contained more methoxyl and free phenolic hydroxyl groups per C9 unit than MWL from Mongolian Pine(MP) due to the existence of both guaiacyl and syringyl units, which have a major influence on the pyrolysis behavior of lignin. The results of pyrolysis show that MWL from MA generated a higher yield of bio-oil, mainly composed of phenols, guaiacols, syringols and catechols, and a less yield of char, in addition to the gaseous products CO, CO2, methane and methanol, compared with MWL from MP. Guaiacol and syringol were the typical products from G-lignin and S-lignin, probably attributed to the easier cleavage of the aryl-alkyl linkage in the side chain compared with the C―OCH3 bond in the benzene ring. The degradation of MWL from MP was dominated by the demethylation reaction and the cleavage of aliphatic ―CH2OH at the γ-position, followed by the cracking of the Cα―Cβ and C4―Cα bonds.
基金supported by the National Natural Science Foundation of China (No. 30972309)the Doctoral Fund of the Ministry of Education of China (No. 20090014110015)
文摘The pyrolysis characteristics of residues of poplar (Populus sp.) wood were investigated using a thermogravimetric analyzer coupled with a Fourier transform infrared (TG-FTIR) spectrometer. The pyrolysis process was sub- divided into four stages at a rate of 10℃.min-1, varying from 30 to 650℃. Below 180℃, a mass loss occurred for drying and preheating the sample and the onset temperature of pyrolysis ranged between 180-260℃. A significant mass loss 3f 61.4 wt.% occurred between 260-380℃, followed by a slow and continuous mass change with lignin devolatilization. The analysis of kinetic reactions showed that the activation energy (78.29 kJ.mol-1) in the low-temperature section was much larger than that (6.40 kJ-mol-1) in the high-temperature section. The evolved gases formed by thermal degradation 3f poplar wood were simultaneously analyzed by FTIR. It was observed from the main peaks that the emissions evolved during poplar wood pyrolysis were acetic acid, carbon dioxide, carbon monoxide, methane, water, some volatile com- 3ounds of esters, alcohols and aldehydes. The emissions gradually increased with rising temperatures before a strong 3eak around 360℃ and then decreased. Most gaseous products were emitted in the 320-380℃ range, while CO2 was =ontinuously emitted in a wide range from 140-550℃.
文摘Climate change, global warming, and energy crisis are critical issues to be solved urgently in a global framework. Alternative energy and renewable energy technologies must be quickly developed to be substituted for fossil fuels like oil, gases, and coal. USA, UE, and Japan invested huge budgets to develop biomass renewable energy technology. Their target is to develop a commercial base large-scaled plant. On the other hand, in developing countries, especially in rural areas, people who can access electricity is still less than 70%, To decelerate or prevent global warming and improve electrification in rural areas, a new technology for wood pyrolysis, which requires low manufacturing cost and less maintenance, and of which gases are directly applicable to the gas engine generator, is developed in a laboratory scale. This paper reports the performance of this new plant and effects of several parameters on the performance. It is concluded that the new technology is quite feasible in rural areas, and upgrading of the plant is easily possible.
基金funded by Natural Science Foundation of Heilongjiang Province(TD2020C001)National Forestry Science and Technology Promotion Project(2019[10])。
文摘Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared temperature detection and smoke identification.Due to the isolation of ground,temperature and smoke characteristics of medium and large smoldering charcoal in some forest soils are not obvious,making it difficult to identify by detection equipment.CO gas is an important detection index for indoor smoldering fire detection,and an important identification feature of hidden smoldering ground fires.However,there is no research on locating smoldering fires through CO detection.We studied the diffusion law of CO gas directly above covered smoldering charcoal as a criterion to design a detection device equipped with multiple CO sensors.According to the motion decomposition search algorithm,the detection device realizes the function of automatically searching for smoldering charcoal.Experimental data shows that the average CO concentration over the covered smoldering charcoal decreases exponentially with increasing height.The size of the search step is related to the reliability of the search algorithm.The detection success corresponding to the small step length is high but the search time is lengthy which can lead to search failure.The introduction of step and rotation factors in search algorithm improves the search efficiency.This study reveals that the average ground CO concentration directly above smoldering charcoal in forests changes with height.Based on this law,a CO gas sensor detection device for hidden smoldering fires has been designed,which enriches the technique of residual fire detection.
基金funded by the Ministere de l’Economie,de la Science et de l’Innovation du Quebec,the Natural Sciences and Engineering Research Council of Canada(NSERC)the Consortium de recherche et innovations en bioprocedes industriels au Quebec(Cribiq)+1 种基金the Canada Research Chair Program,the College of Abitibi-Temiscaminguethe Industrial Waste Technology Centre(Centre Technologique des Residus Industriels)through its partner on this project,Airex Energy.
文摘Reconstituted wood panels have several advantages in terms of ease of manufacturing,but their shorter life span results in a huge amount of reconstituted wood panels being discarded in sorting centers yearly.Currently,the most common approach for dealing with this waste is incineration.In this study,reconstituted wood panels were converted into activated biochar through a two-step thermochemical process:(i)biochar production using pilot scale fast pyrolysis at 250 kg/h and 450℃;and(ii)a physical activation at three temperatures(750℃,850℃ and 950℃)using an in-house activation furnace(1 kg/h).Results showed that the first stage removed about 66% of the nitrogen from the wood panels in the form of NO,NH3,and trimethylamine,which were detected in small amounts compared to emitted CO_(2).Compared to other types of thermochemical conversion methods(e.g.,slow pyrolysis),isocyanic acid and hydrogen cyanide were not detected in this study.The second stage produced activated biochar with a specific surface area of up to 865 m^(2)/g at 950℃.The volatile gases generated during activation were predominantly composed of toluene and benzene.This two-step process resulted in nitrogen-rich carbon in the form of pyrrolic and pyridinic nitrogen.Activated biochars were then evaluated for their SO_(2) retention performance and showed an excellent adsorption capacity of up to 2140 mg/g compared to 65 mg/g for a commercial activated carbon(889 m^(2)/g).End-of-life reconstituted wood panels and SO_(2) gas are problematic issues in Canada where the economy largely revolves around forestry and mining industries.
基金Supported by the Hong Kong RGC in form of PhD Fellowship to Adetoyese Olajire Oyedun(PF09-05997)
文摘Interests in charcoal usage have recently been re-ignited because it is believed that charcoal is a muchbetter fuel than wood. The conventional charcoal production consumes a large amount of energy due to the prolonged heating time and cooling time which contribute to the process completing in one to several days. Wood py-rolysis consists of both endothermic and exothermic reactions as well as the decomposition of the different components at different temperature range (hemicellulose: 200-260℃; cellulose: 240-350℃ and lignin: 280-500℃). Inthis study we propose a multistagepyrolysis which is an approach to carry out pyrolysis with multiple heating stages so as to gain certain processing benefits. We propose a three-stage approach which includes rapid stepwise heating stage to a variable target temperatures of 250 ℃, 300℃, 350 ℃ and 400 ℃, slow and gradual heatingstage to a tinal temperature of 400℃ and adiabatic with cooling stage. The multi-stage pyrolysis process can save 30% energy and the processing time by using a first temperature target of 300 ℃and heating rate of 5℃.min-1 to produce a fixed-carbon yield of 25.73% as opposed to the base case with a fixed-carbon yield of23.18%.
基金Supported by Hong Kong RGC research grant(613808,614307)Hong Kong PhD Fellowship Scheme for Oyedun Adetoyese Olajire(PF09-05997)the Global Power and Energy Company Limited
文摘The analysis on the feedstock pyrolysis characteristic and the impacts of process parameters on pyrolysis outcomes can assist in the designing,operating and optimizing pyrolysis processes.This work aims to utilize both experimental and modelling approaches to perform the analysis on three biomass feedstocks—wood sawdust,bamboo shred and Jatropha Curcas seed cake residue,and to provide insights for the design and operation of pyrolysis processes.For the experimental part,the study investigated the effect of heating rate,final pyrolysis temperature and sample size on pyrolysis using common thermal analysis techniques.For the modelling part,a transient mathematical model that integrates the feedstock characteristic from the experimental study was used to simulate the pyrolysis progress of selected biomass feedstock particles for reactor scenarios.The model composes of several sub-models that describe pyrolysis kinetic and heat flow,particle heat transfer,particle shrinking and reactor operation.With better understanding of the effects of process conditions and feedstock characteristics on pyrolysis through both experimental and modelling studies,this work discusses on the considerations of and interrelation between feedstock size,pyrolysis energy usage,processing time and product quality for the design and operation of pyrolysis processes.