Summary: Primary cell culture, techniques of gene transfection, gelatin zymography, and Western blot were used to investigate the effect of hypoxia on the secretion of MMP 2 and MMP-9 in pulmonary artery endothelial ...Summary: Primary cell culture, techniques of gene transfection, gelatin zymography, and Western blot were used to investigate the effect of hypoxia on the secretion of MMP 2 and MMP-9 in pulmonary artery endothelial cells (PAEC) and smooth muscle cells (PASMC), and the role of HIF-1. Our results showed that (1) after exposure to hypoxia for 24 h, the protein content and activity of MMP-2 in the PAEC medium as well as these of MMP-2 and MMP-9 in PASMC medium (P〈0. 01 ) decreased significantly in contrast to those in normoxic group (P(0.05) ; (2) after transfection of wild type EPO3' enhancer, a HIF-1 decoy, the content and activity of MMP 2 and MMP-9 in hypoxic mediums became higher than those in normoxic group (P〈0. 01), while transfection of mutant EPO3'-enhancer didn't affect the hypoxia-induced down-regulation. It is concluded that hypoxia could inhibit the secretion and activity of MMP 2 and MMP-9 in PAEC and PASMC, which could he mitigated by the transfection of EPO3 '-enhancer and that H1F-1 pathway might contribute to hypoxia-induced down regulation of MMP-2 and MMP-9.展开更多
Objective:To investigate the effects of calcium-activated chloride (ClCa) channels on proliferation of pulmonary artery smooth muscle cells(PASMCs) in rats under chronic hypoxic condition. Methods:The cultured P...Objective:To investigate the effects of calcium-activated chloride (ClCa) channels on proliferation of pulmonary artery smooth muscle cells(PASMCs) in rats under chronic hypoxic condition. Methods:The cultured PASMCs were placed under normoxic and chronic hypoxic conditions:The cells were observed by light and electron microscope; The cell cycles were observed by flow-cytometry; Immunocytochemistry staining was used to detect the expressions of PCNA, c-fos and c-jun of PASMCs; Cytoplasmic free Ca^2+ concentration ([Ca^2+]i) in PASMCs was investigated by fluorescent quantitation using fluorospectrophotometer. Results:The PASMCs were contractile phenotype under normoxic conditions. Observation by transmission electron microscope: In kytoplasm of contractile phenotype cells, myofilament bundles were abundant and the content of cell organs such as Golgi's bodies were rare. The PASMCs were synthetic phenotype under chronic hypoxic condition. There were increased free ribosomes, dilated rough endoplasmic reticulums, highly developed Golgi complexes, decreased or disappeared thick filaments and dense body in kytoplasm of synthetic phenotype cells. After NFA and IAA-94, the situations were reversed The number of S +G2M PASMCs were significantly increased in chronic hypoxic condition; The NFA and IAA-94 were shown to significantly decrease them from (28.6±1.0)% to (16.0±1.6)% and the number of G0G1 PASMCs significantly increased from (71.4± 1.9)% to (83.9 ± 1.6)% (P〈 0.01). In chronic hypoxic conditions, the expression of proliferating cell nucleus antigen was significantly increased; The NFA and IAA-94 were shown to significantly decrease it from (81 ± 6)% to (27 ± 7)%(P 〈 0.01). The expression of c-fos and c-jun were significantly increased in'chronic hypoxic conditions; The NFA and IAA-94 were shown to significantly decrease them from 0.15 ±0.02, 0.32 ± 0.05 to 0.05 ± 0.01, 0.12 ± 0.05, respectively (P〈 0.01); Under chronic hypoxic conditions, [Ca^2+]i was increased; The NFA and IAA-94 decreased it from (281.8±16,5)nmol/L to (117.7 ± 15.4)nmol/L(P 〈 0.01). Conclusion:Hypoxia initiated the change of PASMCs from contractile to synthetic phenotype and increased proliferation of PASMCs. NFA and IAA-94 depressed cell proliferation by blocking ClCa channels in hypoxic condition. These may play an important role in proliferation of PASMCs under chronic hypoxic conditions.展开更多
Cigarette smoking contributes to the development of pulmonary artery hypertension(PAH).As the basic pathological change of PAH,pulmonary vascular remodeling is considered to be related to the abnormal proliferation of...Cigarette smoking contributes to the development of pulmonary artery hypertension(PAH).As the basic pathological change of PAH,pulmonary vascular remodeling is considered to be related to the abnormal proliferation of pulmonary artery smooth muscle cells(PASMCs).However,the molecular mechanism underlying this process remains not exactly clear.The aim of this research was to study the molecular mechanism of PASMCs proliferation induced by smoking.Human PASMCs(HPASMCs)were divided into 6 groups:0%(control group),cigarette smoking extract(CSE)-treated groups at concentrations of 0.5%,1%,2%,5%,10%CSE respectively.HPASMCs proliferation was observed after 24 h.HPASMCs were divided into two groups:0(control group),0.5%CSE group.The mRNA and protein expression levels of transient receptor potential channel 1(TRPC1)and cyclin D1 in HPASMCs after CSE treatment were respectively detected by RT-PCR and Western blotting.The intracellular calcium ion concentration was measured by the calcium probe in each group.In the negative control group and TRPC1-siRNA transfection group,the proliferation of HPASMCs and the expression of cyclin D1 mRNA and protein were detected.Data were compared with one-way ANOVA(for multiple-group comparison)and independent t-test(for two-group comparison)followed by the least significant difference(LSD)test with the computer software SPSS 17.0.It was found that 0.5%and 1%CSE could promote the proliferation of HPASMCs(P<0.05),and the former was more effective than the latter(P<0.05),while 3%and above CSE had inhibitory effect on HPASMCs(P<0.05).The mRNA and protein expression levels of TRPC1 and cyclin D1 in 0.5%and 1%CSE groups were significantly higher than those in the control group(P<0.05),while those in 3%CSE group were significantly decreased(P<0.05).Moreover,the proliferation of HPASMCs and the expression of cyclin D1 mRNA and protein in TRPC1-siRNA transfection group were significantly reduced as compared with those in the negative control group(P<0.05).It was concluded that low concentration of CSE can promote the proliferation of HPASMCs,while high concentrations of CSE inhibit HPASMCs proliferation.These findings suggested that CSE induced proliferation of HPASMCs at least in part via TRPC1-mediated cyclin D1 expression.展开更多
Objective : To investigate the effects of the transfection of NHE-1 ribozyme gene on the apoptosis of pulmonary artery smooth muscle cells (PASMC) in vitro. Methods: After NHE-1 ribozyme gene was designed, synthesized...Objective : To investigate the effects of the transfection of NHE-1 ribozyme gene on the apoptosis of pulmonary artery smooth muscle cells (PASMC) in vitro. Methods: After NHE-1 ribozyme gene was designed, synthesized and then cloned into plasmid pLXSN, the recombined plasmid was tansfected into cultured rat PASMC. Expression of NHE-1 mRNA was detected with semi-quantitative RT-PCR. Intracellular pH (pHi) was measured by using fluorescence dye BCECF-AM. Cell cycle was measured with aid of flow cy-tometric DNA analysis. Cell apoptosis was observed with electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNED respectively. Results: The NHE-1 mRNA expression level and pHi value were significantly lower in PASMCs transfected with NHE-1 ribozyme gene than those transfected with pLXSN or without transfection. Meanwhile, the apoptosis rate of cells transfected with NHE-1 ribozyme gene was increased significantly. Morphology of cell apoptosis was observed in the cells transfected with NHE-1 ribozyme gene under an electron microscope. Conclusion: The transfection of NHE-1 ribozyme gene induces the apoptosis of PASMCs by inhibiting NHE-1 expression and intracellular acidification.展开更多
In order to study the effect of Erigeron Breviscapus (EB) on proliferation of pulmonary artery smooth muscle cells (PASMC) in hypoxic porcines, immunohistochemical and MTT methods were employed to measure the prolifer...In order to study the effect of Erigeron Breviscapus (EB) on proliferation of pulmonary artery smooth muscle cells (PASMC) in hypoxic porcines, immunohistochemical and MTT methods were employed to measure the proliferation of PASMC. It was found that the proliferation of PASMC in porcines was obvious, and the expression of proliferating cell nuclear antigen (PCNA) was significantly high within 48 h after exposure to hypoxia. The EB could inhibit the proliferation and the expression of PCNA in PASMC under hypoxia, but it had no effect on the proliferation and expression of PCNA in PASMC under normal condition. The EB could inhibit the proliferation and the expression of PCNA in PASMC induced by phorbol 12-myristate 13-acetate (PMA), an agonist of PKC in normal and hypoxic conditions. It was concluded that the hypoxia could enhance the proliferation and expression of PCNA in PASMC. The EB can inhibit the proliferation and expression of PCNA in PASMC under hypoxia through PKC-signal way. The EB may be used in treating the pulmonary hypertension by inhibiting the proliferation of PASMC and the pulmonary vascular remodeling.展开更多
To investigate the relationship between intracellular free Ca^2+ concentration ([Ca^2+ ]i ) and calcium-activated chloride (Clca) channels of pulmonary artery smooth muscle cells (PASMCs) in rats under acute a...To investigate the relationship between intracellular free Ca^2+ concentration ([Ca^2+ ]i ) and calcium-activated chloride (Clca) channels of pulmonary artery smooth muscle cells (PASMCs) in rats under acute and chronic hypoxic conditions, acute hypoxia-induced contraction was observed in rat pulmonary artery by using routine blood vascular perfusion in vitro. The fluorescence Ca^2+ indicator Fura-2/AM was used to observe [Ca^2+ ]i of rat PASMCs under normal and chronic hypoxic condition. The effect of Clca channels on PASMCs proliferation was assessed by MTT assay. The Clca channel blockers niflumic acid (NFA) and indaryloxyacetic acid (IAA-94) exerted inhibitory effects on acute hypoxia-evoked contractions in the pulmonary artery. Under chronic hypoxic condition, [Ca^2+ ]i was increased. Under normoxic condition, [Ca^2+ If was (123.634-18.98) nmol/ L, and in hypoxic condition, [Ca^2+]i wag (281. 754-16.48) nmol/L (P〈0. 01). Under normoxic condition, [Ca^2+ ]i showed no significant change and no effect on Clca channels was observed (P〉 0. 05). Chronic hypoxia increased [Ca^2+ ]i which opened Clca channels. The NFA and IAA-94 blocked the channels and decreased [Ca^2+ ]i from (281.75± 16.48) nmot/L to (117.66 ±15.36) nmol/L (P〈0.01). MTT assay showed that under chronic hypoxic condition NFA and IAA-94 decreased the value of absorbency (A value) from 0. 459±0. 058 to 0. 224±0. 025 (P〈0. 01). Hypoxia increased [Ca^2+ ]i which opened Cl~ channels and had a positive-feedback in [Ca^2+ ]i. This may play an important role in hypoxic pulmonary hypertension. Under chronic hypoxic condition, Clca channel may play a part in the regulation of proliferation of PASMCs.展开更多
In order to investigate the effect of nuclear factor kappa B (NF κB) on vascular endothelial growth factor (VEGF) mRNA expression of human pulmonary artery smooth muscle cells (HPASMCs) in hypoxia, the cultured HPA...In order to investigate the effect of nuclear factor kappa B (NF κB) on vascular endothelial growth factor (VEGF) mRNA expression of human pulmonary artery smooth muscle cells (HPASMCs) in hypoxia, the cultured HPASMCs in vitro were stimulated with pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF κB. The NF κB p65 nuclei positive expression was detected by immunocytochemical technique. The IκBα protein expression was measured by Western blot. RT PCR was used to detect the VEGF mRNA expression of HPASMCs. The results showed that no significant change was observed in the NF κB p65 nuclei positive expression of cultured HPASMCs during 6 h-24 h in normoxia, but the levels of NF κB p65 nuclei positive expression of cultured HPASMCs were significantly increased in hypoxia groups as compared with those in all normoxia groups ( P <0.05). The IκBα protein expression of cultured HPASMCs showed no significant change during 6 h-24 h in normoxia, but significantly decreased in hypoxia as comapred with that in normoxia groups ( P <0.05). PDTC (1 to 100 μmol/L) could inhibit the VEGF mRNA expression of HPASMCs in a concentration dependent manner in hypoxia. In conclusion, NF κB can be partly translocation activated from cytoplasm into nuclei in the cultured HPASMCs under hypoxia. The inhibition of NF κB activation can decrease the VEGF mRNA expression. It is suggested that the activation of NF κB is involved in the VEGF mRNA expression of HPASMCs under hypoxia.展开更多
Background:Pulmonary arterial hypertension(PAH)is a chronic and progressive disease that is strongly associated with dysregulation of glucose metabolism.Alterations in nuclear receptor subfamily 4 group A member 1(NR4...Background:Pulmonary arterial hypertension(PAH)is a chronic and progressive disease that is strongly associated with dysregulation of glucose metabolism.Alterations in nuclear receptor subfamily 4 group A member 1(NR4A1)activity alter the outcome of PAH.This study aimed to investigate the effects of NR4A1 on glycolysis in PAH and its underlying mechanisms.Methods:This study included twenty healthy volunteers and twenty-three PAH patients,and plasma samples were collected from the participants.To mimic the conditions of PAH in vitro,a hypoxia-induced model of pulmonary artery smooth muscle cell(PASMC)model was established.The proliferation of PASMCs was assessed using CCK8 assays.Results:Levels of NR4A1,hypoxia-inducible factor-1α(HIF-1α),and various glycolysis-related enzymes were measured.In addition,extracellular glucose and lactate production were assessed.The interaction between NR4A1 and HIF-1αwas evaluated by co-immunoprecipitation assays.Levels of NR4A1 and HIF-1αwas increased in PAH patients,and exposure to hypoxia resulted in increased levels of NR4A1 and HIF-1αin PASMCs.NR4A1 interacted with HIF-1α.NR4A1 overexpression enhanced hypoxia-induced expression of HIF-1α,GLUT1,PKM2,HK2,and CD36,decreased glucose levels,increased lactate levels and promoted hypoxic PASMC viability.Conversely,silencing NR4A1 decreased hypoxia-induced expression of HIF-1α,GLUT1,PKM2,HK2,and CD36,promoted glucose production,reduced lactate levels and inhibited hypoxic PASMC viability.Furthermore,overexpression of HIF-1αreversed the regulation of glycolysis caused by NR4A1 knockdown.Conclusion:NR4A1 enhances glycolysis in hypoxia-induced PASMCs by upregulating HIF-1α.Our findings indicate that the management of NR4A1 activity may be a promising strategy for PAH therapy.展开更多
The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL wa...The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL was isolated and purified from human plasma. Ox-LDL was produced from LDL by being incubated with CuSO4. ox-LDL was then added to the culture medium at different concentrations (35, 60, 85, 110, 135 and 160μg/mL) for 7 days. The influence of ox-LDL on vSMC proliferation was observed in growth curve, mitosis index, and in situ determination of apoptosis. The data were analyzed with SPSS 10.0 software. The results showed that the ox-LDL produced in vitro had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque, ox-LDL at a concentration of 35 μg/mL demonstrated the strongest proliferation inducement, and at a concentration of 135 μg/mL, ox-LDL could inhibit the growth of vSMC. ox-LDL at concentrations of 35 and 50 μg/mL presented powerful mitotic trigger, and with the increase of ox-LDL concentration, the mitotic index of vSMC was decreased gradually, ox-LDL at higher concentrations promoted more apoptotic vSMCs, ox-LDL at lower concentrations triggered proliferation of vSMCs, and at higher concentrations induced apoptosis in vSMCs, ox-LDL played a promotional role in the pathogenesis and development of atherosclerosis by affecting vSMC proliferation and apoptosis.展开更多
Objective To investigate the effect of gelatin coated Platinium-Iridium stent absorbed c-myc antisense oligodeoxynucleotide (ASODN) on smooth muscle cells apoptosis in a normal rabbit carotid arteries. Methods Gelatin...Objective To investigate the effect of gelatin coated Platinium-Iridium stent absorbed c-myc antisense oligodeoxynucleotide (ASODN) on smooth muscle cells apoptosis in a normal rabbit carotid arteries. Methods Gelatin coated Platinium-Iridium stents were implanted in the right carotid arteries of 32 rabbits under vision. Animals were randomly divided into control group and treated group receiving c-myc ASODN ( n =16, respectively). On 7, 14, 30 and 90 days following the stenting procedure ,morphometry for caculation of neointimal area and mean neointimal thickness were performed.The expression of c-myc protein was detected by immunohistochemical method. Apoptotic smooth muscle cells was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL). Results At 7 and 14 days after stenting,there were no detectable apoptotic cells in both groups. The apoptotic cells occurred in the neointima 30 and 90 days after stenting, and the number of apoptotic cells at 30 days were less [4.50±1.29 vs 25.75±1.89 (number/0.1mm 2)] than that at 90 days [13.50±1.91 vs 41.50±6.46 (number/0.1mm 2)]. Meanwhile c-myc ASODN induced more apoptotic cells than the control group( P <0.0001). c-myc protein expression was weak positive or negative in treated group and positive in control group.Conclusion c-myc ASODN can induce smooth muscle cells apoptosis after stenting in normal rabbit carotid arteries,and it can be used to prevent in-stent restenosis.展开更多
By using Ca2+ -sensitive fluorescent probe, Fura-2 , the effects of endothelial cell-conditioned medium and hypoxia on intracellular free calcium ( [Ca2+]i) in cultured pulmonary artery smooth muscle cell (PASMC) were...By using Ca2+ -sensitive fluorescent probe, Fura-2 , the effects of endothelial cell-conditioned medium and hypoxia on intracellular free calcium ( [Ca2+]i) in cultured pulmonary artery smooth muscle cell (PASMC) were studied. Normoxic porcine pulmonary artery endothelial cell-conditioned medium (NPAECCM) obviously elevated [Ca2+]i in PASMC,whereas the hypoxic porcine pulmonary artery endothelial cell conditioned medium (HPAECCM)significantly elevated [Ca2+]i in PASMC much more than NPAECCM. Both the effects of NPAECCM and HPAECCM were dependent on the cultured endothelial cell extracellular calcium concentrations, ranged from 1.8 mmol/L to 2. 4 mmol/L.Meanwhile, hypoxia directly increased, which was partially inhibited by verapamil,[Ca2+]i in PASMC through Ca2+ influx pathway.The data suggest that the augmented regulation of endothelial cell on PASMC via Ca2+ second messenger system and the hypoxia-induced Ca2+ influx into PASMC,particularly the former, may be components of mechanisms underlying hypoxic pulmonary vasoconstriction and chronic pulmonary hypertension.展开更多
Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including func...Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including functioning as a growth factor, and as a contractile hormone, among others. The aim of this work was to examine the impact of Ang II on the expression and function of α<sub>1</sub>-adrenergic receptors (α<sub>1</sub>-ARs) in cultured rat aorta, and aorta-derived smooth muscle cells. Isolated Wistar rat aorta was incubated for 24 h in DMEM at 37˚C, then subjected to isometric tension and to the action of added norepinephrine, in concentration-response curves. Ang II was added (1 × 10<sup>−5</sup> M), and in some experiments, 5-Methylurapidil (α<sub>1A</sub>-AR antagonist), AH11110A (α<sub>1B</sub>-AR antagonist), or BMY-7378 (α<sub>1D</sub>-AR antagonist), were used to identify the α<sub>1</sub>-AR involved in the response. Desensitization of the contractile response to norepinephrine was observed due to incubation time, and by the Ang II action. α<sub>1D</sub>-AR was protected from desensitization by BMY-7378;while RS-100329 and prazosin partially mitigated desensitization. In another set of experiments, isolated aorta-derived smooth muscle cells were exposed to Ang II and α<sub>1</sub>-ARs proteins were evaluated. α<sub>1D</sub>-AR increased at 30 and 60 min post Ang II exposure, the α<sub>1A</sub>-AR diminished from 1 to 4 h, while α<sub>1B</sub>-AR remained unchanged over 24 h of Ang II exposure. Ang II induced an increase of α<sub>1D</sub>-AR at short times, and BMY-7378 protected α<sub>1D</sub>-AR from desensitization.展开更多
The neonate is particularly susceptible to the development of hypoxic pulmonary hypertension. The present study was undertaken to observe the effect of hypoxia on DNA synthesis and c-myc gene expression between newbor...The neonate is particularly susceptible to the development of hypoxic pulmonary hypertension. The present study was undertaken to observe the effect of hypoxia on DNA synthesis and c-myc gene expression between newborn calf and adult bovine PASMC in vilro. DNA synthesis measured by 3H- TdR incorporation was increased after hypoxic challenge for 24h. Hypoxia enhanced the increment in 3H-TdR incorporation induced by EGF. Northern blot analysis revealed that PASMC cultured in both normoxia and hypoxia expressed c- myc gene transcript of 2. 2Kb ,but there is a higher 2. 2Kb mRNA expression in hypoxic PASMC than that in normoxia. We speculate that newborn calf PASMC exhibited potential response to hypoxia than adult,which was augmented by EGF. Enhanced c-myc gene expression may lead to a great understanding of the mechanism of PASMC growth in the development of pulmonary hypertension.展开更多
The aim of this study was to establish a method of isolating and culturing smooth muscle cells from the ductus deferens of rats. Smooth muscle cells were prepared from ductus deferens by explanting technique after dis...The aim of this study was to establish a method of isolating and culturing smooth muscle cells from the ductus deferens of rats. Smooth muscle cells were prepared from ductus deferens by explanting technique after dissection of adventitia and intimae, and cultured in vitro. The identification of the smooth muscle cells were verified by using anti u-smooth muscle actin (a-SMA) immunohistochemistry studies. The result suggested that the cells are multi-morphous, showing long fusiform or star shapes. The apophysis of cells contacted and coalesced to each other, in some regions the cells overlapped in multilayer, while in the other regions they formed monolayer that fluctuated and showed a "peak-valley" shape. They presented a positive reaction through immunohistochemistry studies. The purity of the cells was more than 99% through this method. The culturing of smooth muscle cells by explanting technique is simple and stable.展开更多
Objective This study aimed to investigate the effects of the peroxisome proliferator-activated receptorδ(PPARδ)agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells(PASMCs)induced by hypoxia,...Objective This study aimed to investigate the effects of the peroxisome proliferator-activated receptorδ(PPARδ)agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells(PASMCs)induced by hypoxia,in order to search for new drugs for the treatment and prevention of pulmonary vascular remodeling.Methods PASMCs were incubated with different concentrations of GW501516(10,30,100 nmol/L)under the hypoxic condition.The proliferation was determined by a CCK-8 assay.The cell cycle progression was analyzed by flow cytometry.The expression of PPARδ,S phase kinase-associated protein 2(Skp2),and cell cycle-dependent kinase inhibitor p27 was detected by Western blotting.Then PASMCs were treated with 100 nmol/L GW501516,100 nmol/L mammalian target of rapamycin(mTOR)inhibitor rapamycin and/or 2µmol/L mTOR activator MHY1485 to explore the molecular mechanisms by which GW501516 reduces the proliferation of PASMCs.Results The presented data demonstrated that hypoxia reduced the expression of PPARδin an oxygen concentration-and time-dependent manner,and GW501516 decreased the proliferation of PASMCs induced by hypoxia by blocking the progression through the G0/G1 to S phase of the cell cycle.In accordance with these findings,GW501516 downregulated Skp2 and upregulated p27 in hypoxia-exposed PASMCs.Further experiments showed that rapamycin had similar effects as GW501516 in inhibiting cell proliferation,arresting the cell cycle,regulating the expression of Skp2 and p27,and inactivating mTOR in hypoxia-exposed PASMCs.Moreover,MHY1485 reversed all the beneficial effects of GW501516 on hypoxia-stimulated PASMCs.Conclusion GW501516 inhibited the proliferation of PASMCs induced by hypoxia through blocking the mTOR/Skp2/p27 signaling pathway.展开更多
The effects of sodium ferulate(SF), a water-soluble element of Chinese medicine Angelica sinensis diels, on cell-mediated oxidative modification of human low density lipoprotein(LDL) and proliferation of rabbit aortic...The effects of sodium ferulate(SF), a water-soluble element of Chinese medicine Angelica sinensis diels, on cell-mediated oxidative modification of human low density lipoprotein(LDL) and proliferation of rabbit aortic smooth muscle cells(SMCs) were investigated. Using experimental models of proliferation of cultured rabbit aortic SMCs induced by oxidized LDL(ox-LDL), the extent of oxidation was determined by thiobarbituric acid reactive substances(TBARS) method, MTT colorimetry and 3H-thymidine(3H-TdR) incorporation were used to observe proliferation of SMCs. It showed that SF effectively inhibited cell-mediated oxidation induced by Cu2+ in a concentration-dependent manner. At the final concentration of 40, 80, 120 gmL-1, SF could significantly inhibit 3H-TdR incorporation and cell Proliferation in a dose-dependent manner. The results indicated that SF could, in vitro protect LDL against oxidative modification and inhibit the proliferation of SMC, which might be due to its free radical scavenging capacity.展开更多
Objective: To investigate the effect of intravascular in radiation on thearterial wall smooth muscle cells (SMCs) proliferation and apoptosis after iliac artery bollominjury in figs. Methods: Twenty-seven miniature fi...Objective: To investigate the effect of intravascular in radiation on thearterial wall smooth muscle cells (SMCs) proliferation and apoptosis after iliac artery bollominjury in figs. Methods: Twenty-seven miniature figs were divided into three groups. All pigsunderwent iliac artery balloon over-stretch. An^(192) Ir source through afterloader was positionedat the injuried segments to give 10 Gy in 9 pigs and 20 Gy in the other 9 pigs, and the rest 9 pigswere, used as control group. The pigs were killed on the 3rd, 10th and 28th days respectively forobservation. The injured segments were processed to examine SMCs proliferation by proliferation cellnuclear antigen (PCNA) and apopto-sis by terminal deoxynucleotidyl transferase-mediated dUTPnick-end labeling (TUNEL). Results: PC-NA index analysis has some that SMCs proliferation inneointima was significantly inhibited in irradiation group on the 10th and 28th days. The value forintimal SMCs apoptosis in control vs 10 Gy and 20 Gy irradiation groups were: (1. 185+-0. 49)% vs(2. 27+-0. 49)%(P>0. 05) and (1. 85+-0. 49)% vs (2. 53+-0. 45)%(P<0. 05), at the 10th day; (1.61+-0. 35)% vs (3. 11+-0. 51)%(P<0. 05), and (1.61+-0. 35)% vs (7. 05+-1. 82)% (P<0. 05), on the28th day. In irradiated arteries, the maximal incidence of intimal SMCs apoptosis was (7. 05+--1.82)% in 20 Gy group vs (3. 11+-0. 51)% in 10 Gy group (P<0. 05), on the 28th day. In the same doseirradiation group, the incidence of intimal SMCs apoptosis was higher on the 28th day than that onthe 10th day. Conclusion: Intra-arterial gamma irradiation can inhibit intimal SMCs proliferationand stimulate SMCs apoptosis in balloon-in jured arteries. These may be contributive to preventionof restenosis of arteries after balloon injury.展开更多
Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter ...Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter was constructed by reporter gene system and was transiently transfected into VSMCs and THP-1 in vitro. The promoter activity was tested by luciferase activity with or without LPS and Ang Ⅱ stimulation, before and after different dosage of As2O3 treatment. Results 1. TNF-α promoter effectively expressed in VSMCs and THP-1 compared with CMV promoter (58.3% and 80.9%, respectively). Both LPS and Ang Ⅱ significantly up-regulated TNF-α promoter activity (P〈0.05). 2. As2O3 significantly inhibited, both intact and LPS/Ang Ⅱ stimulated promoter activity, in a dose dependent manner (P〈0.05), and in both cell type. Conclusion These results manifested that, the inhibition effect of As2O3 on the activity of human TNF-α promoter indicated its potential inhibition on pro-inflammatory cytokine genes expression at transcriptional level and its potential anti-inflammatory property in the cardiovascular system.展开更多
Objective: This study aims to investigate the effects of urocortin (Ucn) on the viability of endothelial cells (ECV304) and rat vascular muscle cells (VSMC). Methods: Rat aortic VSMC were isolated from the rats' t...Objective: This study aims to investigate the effects of urocortin (Ucn) on the viability of endothelial cells (ECV304) and rat vascular muscle cells (VSMC). Methods: Rat aortic VSMC were isolated from the rats' thoracic aorta. We studied the effect of Ucn on the viability of ECV304 cells and VSMC by using a tetrazolium (MTT) assay.Results: Ucn (10 -7 mol/L) inhibited the viability of ECV304 cells and VSMC. Inhibition rates are 13% and 15%, respectively(P<0.05, compared with Control). This inhibition was not dependent on the affecting time and was not affected by the addition of ATP-sensitive potassium channel (KATP channel) blocker, glybenclamide (Gly, 10 mol/L). Conclusion: Ucn inhibits the viability of ECV304 and VSMC. Our results suggest that Ucn may be a new vasoactive agent and may have a beneficial effect in the process of vascular remodeling (VR).展开更多
This study compared tankyrase 1 expression and autophagy quantity between erectile dysfunction (ED) and non-ED rats' corpus cavernosum smooth muscle cells (CSMCs). This study aslo explored the effect and possible...This study compared tankyrase 1 expression and autophagy quantity between erectile dysfunction (ED) and non-ED rats' corpus cavernosum smooth muscle cells (CSMCs). This study aslo explored the effect and possible mechanism of tankyrase 1 on autophagy and cell proliferation in ageing ED rats' CSMCs. The intracavernous pres- sure and mean systemic arterial pressure were measured to investigate erectile function so that eight 24-month-old ED and eight 8-month-old male Wistar rats were choosed respectively. The rat CSMCs were isolated and cultured by enzyme digestion, in which tankyrase 1 expression and autophagy quantity were compared. Tankyrase 1 over-expression was induced with plasmid transfection by Lipofectamine^TM. The effect of tankyrase 1 overexpression on proliferation, autophagy and mTOR pathway in 24-month-old ED rats' CSMCs was measured by the cell growth curve in MTT assay, cell cycle analysis in flow cytometry (FCM), key protein expression in Western blot, autophagy quantity in transmission electron microscopy, monodansylcadaverine staining and GFP-LC3 fluorescence. The primary CSMCs were confirmed by immunofluorescence, and the purity was 99.1% in FCM. Compared with that of 8-month-old rats, tankyrase 1 expression and autophagy quantity significantly decreased in 24-month-old ED rats' primary CSMCs (P 〈 0.01). Tankyrase 1 overexpression significantly increased the growth rate (P 〈 0.05) and increased the S phase of cell cycle (P 〈 0.01). The autophagosome quantity was remarkably increased (P 〈 0.01), LC3-Ⅰ/Ⅱ and Beclin 1 were upregulated (P 〈 0.01 and P 〈 0.05), and p-p70S6K (Thr389) was downregulated in 24-month-old ED rat CSMCs (P 〈 0.05). In conclusion, Tankyrase 1 and autophagy decrease in the CSMCs from aging rats with ED, and tankyrase 1 may have a positive effect on proliferation by enhancing autophagy and regulating the mTOR signalling pathway.展开更多
文摘Summary: Primary cell culture, techniques of gene transfection, gelatin zymography, and Western blot were used to investigate the effect of hypoxia on the secretion of MMP 2 and MMP-9 in pulmonary artery endothelial cells (PAEC) and smooth muscle cells (PASMC), and the role of HIF-1. Our results showed that (1) after exposure to hypoxia for 24 h, the protein content and activity of MMP-2 in the PAEC medium as well as these of MMP-2 and MMP-9 in PASMC medium (P〈0. 01 ) decreased significantly in contrast to those in normoxic group (P(0.05) ; (2) after transfection of wild type EPO3' enhancer, a HIF-1 decoy, the content and activity of MMP 2 and MMP-9 in hypoxic mediums became higher than those in normoxic group (P〈0. 01), while transfection of mutant EPO3'-enhancer didn't affect the hypoxia-induced down-regulation. It is concluded that hypoxia could inhibit the secretion and activity of MMP 2 and MMP-9 in PAEC and PASMC, which could he mitigated by the transfection of EPO3 '-enhancer and that H1F-1 pathway might contribute to hypoxia-induced down regulation of MMP-2 and MMP-9.
文摘Objective:To investigate the effects of calcium-activated chloride (ClCa) channels on proliferation of pulmonary artery smooth muscle cells(PASMCs) in rats under chronic hypoxic condition. Methods:The cultured PASMCs were placed under normoxic and chronic hypoxic conditions:The cells were observed by light and electron microscope; The cell cycles were observed by flow-cytometry; Immunocytochemistry staining was used to detect the expressions of PCNA, c-fos and c-jun of PASMCs; Cytoplasmic free Ca^2+ concentration ([Ca^2+]i) in PASMCs was investigated by fluorescent quantitation using fluorospectrophotometer. Results:The PASMCs were contractile phenotype under normoxic conditions. Observation by transmission electron microscope: In kytoplasm of contractile phenotype cells, myofilament bundles were abundant and the content of cell organs such as Golgi's bodies were rare. The PASMCs were synthetic phenotype under chronic hypoxic condition. There were increased free ribosomes, dilated rough endoplasmic reticulums, highly developed Golgi complexes, decreased or disappeared thick filaments and dense body in kytoplasm of synthetic phenotype cells. After NFA and IAA-94, the situations were reversed The number of S +G2M PASMCs were significantly increased in chronic hypoxic condition; The NFA and IAA-94 were shown to significantly decrease them from (28.6±1.0)% to (16.0±1.6)% and the number of G0G1 PASMCs significantly increased from (71.4± 1.9)% to (83.9 ± 1.6)% (P〈 0.01). In chronic hypoxic conditions, the expression of proliferating cell nucleus antigen was significantly increased; The NFA and IAA-94 were shown to significantly decrease it from (81 ± 6)% to (27 ± 7)%(P 〈 0.01). The expression of c-fos and c-jun were significantly increased in'chronic hypoxic conditions; The NFA and IAA-94 were shown to significantly decrease them from 0.15 ±0.02, 0.32 ± 0.05 to 0.05 ± 0.01, 0.12 ± 0.05, respectively (P〈 0.01); Under chronic hypoxic conditions, [Ca^2+]i was increased; The NFA and IAA-94 decreased it from (281.8±16,5)nmol/L to (117.7 ± 15.4)nmol/L(P 〈 0.01). Conclusion:Hypoxia initiated the change of PASMCs from contractile to synthetic phenotype and increased proliferation of PASMCs. NFA and IAA-94 depressed cell proliferation by blocking ClCa channels in hypoxic condition. These may play an important role in proliferation of PASMCs under chronic hypoxic conditions.
文摘Cigarette smoking contributes to the development of pulmonary artery hypertension(PAH).As the basic pathological change of PAH,pulmonary vascular remodeling is considered to be related to the abnormal proliferation of pulmonary artery smooth muscle cells(PASMCs).However,the molecular mechanism underlying this process remains not exactly clear.The aim of this research was to study the molecular mechanism of PASMCs proliferation induced by smoking.Human PASMCs(HPASMCs)were divided into 6 groups:0%(control group),cigarette smoking extract(CSE)-treated groups at concentrations of 0.5%,1%,2%,5%,10%CSE respectively.HPASMCs proliferation was observed after 24 h.HPASMCs were divided into two groups:0(control group),0.5%CSE group.The mRNA and protein expression levels of transient receptor potential channel 1(TRPC1)and cyclin D1 in HPASMCs after CSE treatment were respectively detected by RT-PCR and Western blotting.The intracellular calcium ion concentration was measured by the calcium probe in each group.In the negative control group and TRPC1-siRNA transfection group,the proliferation of HPASMCs and the expression of cyclin D1 mRNA and protein were detected.Data were compared with one-way ANOVA(for multiple-group comparison)and independent t-test(for two-group comparison)followed by the least significant difference(LSD)test with the computer software SPSS 17.0.It was found that 0.5%and 1%CSE could promote the proliferation of HPASMCs(P<0.05),and the former was more effective than the latter(P<0.05),while 3%and above CSE had inhibitory effect on HPASMCs(P<0.05).The mRNA and protein expression levels of TRPC1 and cyclin D1 in 0.5%and 1%CSE groups were significantly higher than those in the control group(P<0.05),while those in 3%CSE group were significantly decreased(P<0.05).Moreover,the proliferation of HPASMCs and the expression of cyclin D1 mRNA and protein in TRPC1-siRNA transfection group were significantly reduced as compared with those in the negative control group(P<0.05).It was concluded that low concentration of CSE can promote the proliferation of HPASMCs,while high concentrations of CSE inhibit HPASMCs proliferation.These findings suggested that CSE induced proliferation of HPASMCs at least in part via TRPC1-mediated cyclin D1 expression.
基金National Natural Science Foundation of China (No. 39870352)
文摘Objective : To investigate the effects of the transfection of NHE-1 ribozyme gene on the apoptosis of pulmonary artery smooth muscle cells (PASMC) in vitro. Methods: After NHE-1 ribozyme gene was designed, synthesized and then cloned into plasmid pLXSN, the recombined plasmid was tansfected into cultured rat PASMC. Expression of NHE-1 mRNA was detected with semi-quantitative RT-PCR. Intracellular pH (pHi) was measured by using fluorescence dye BCECF-AM. Cell cycle was measured with aid of flow cy-tometric DNA analysis. Cell apoptosis was observed with electron microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNED respectively. Results: The NHE-1 mRNA expression level and pHi value were significantly lower in PASMCs transfected with NHE-1 ribozyme gene than those transfected with pLXSN or without transfection. Meanwhile, the apoptosis rate of cells transfected with NHE-1 ribozyme gene was increased significantly. Morphology of cell apoptosis was observed in the cells transfected with NHE-1 ribozyme gene under an electron microscope. Conclusion: The transfection of NHE-1 ribozyme gene induces the apoptosis of PASMCs by inhibiting NHE-1 expression and intracellular acidification.
基金This project was supported by a grant from the National Natural Sciences Foundation of China(No.[1997]436 )
文摘In order to study the effect of Erigeron Breviscapus (EB) on proliferation of pulmonary artery smooth muscle cells (PASMC) in hypoxic porcines, immunohistochemical and MTT methods were employed to measure the proliferation of PASMC. It was found that the proliferation of PASMC in porcines was obvious, and the expression of proliferating cell nuclear antigen (PCNA) was significantly high within 48 h after exposure to hypoxia. The EB could inhibit the proliferation and the expression of PCNA in PASMC under hypoxia, but it had no effect on the proliferation and expression of PCNA in PASMC under normal condition. The EB could inhibit the proliferation and the expression of PCNA in PASMC induced by phorbol 12-myristate 13-acetate (PMA), an agonist of PKC in normal and hypoxic conditions. It was concluded that the hypoxia could enhance the proliferation and expression of PCNA in PASMC. The EB can inhibit the proliferation and expression of PCNA in PASMC under hypoxia through PKC-signal way. The EB may be used in treating the pulmonary hypertension by inhibiting the proliferation of PASMC and the pulmonary vascular remodeling.
文摘To investigate the relationship between intracellular free Ca^2+ concentration ([Ca^2+ ]i ) and calcium-activated chloride (Clca) channels of pulmonary artery smooth muscle cells (PASMCs) in rats under acute and chronic hypoxic conditions, acute hypoxia-induced contraction was observed in rat pulmonary artery by using routine blood vascular perfusion in vitro. The fluorescence Ca^2+ indicator Fura-2/AM was used to observe [Ca^2+ ]i of rat PASMCs under normal and chronic hypoxic condition. The effect of Clca channels on PASMCs proliferation was assessed by MTT assay. The Clca channel blockers niflumic acid (NFA) and indaryloxyacetic acid (IAA-94) exerted inhibitory effects on acute hypoxia-evoked contractions in the pulmonary artery. Under chronic hypoxic condition, [Ca^2+ ]i was increased. Under normoxic condition, [Ca^2+ If was (123.634-18.98) nmol/ L, and in hypoxic condition, [Ca^2+]i wag (281. 754-16.48) nmol/L (P〈0. 01). Under normoxic condition, [Ca^2+ ]i showed no significant change and no effect on Clca channels was observed (P〉 0. 05). Chronic hypoxia increased [Ca^2+ ]i which opened Clca channels. The NFA and IAA-94 blocked the channels and decreased [Ca^2+ ]i from (281.75± 16.48) nmot/L to (117.66 ±15.36) nmol/L (P〈0.01). MTT assay showed that under chronic hypoxic condition NFA and IAA-94 decreased the value of absorbency (A value) from 0. 459±0. 058 to 0. 224±0. 025 (P〈0. 01). Hypoxia increased [Ca^2+ ]i which opened Cl~ channels and had a positive-feedback in [Ca^2+ ]i. This may play an important role in hypoxic pulmonary hypertension. Under chronic hypoxic condition, Clca channel may play a part in the regulation of proliferation of PASMCs.
文摘In order to investigate the effect of nuclear factor kappa B (NF κB) on vascular endothelial growth factor (VEGF) mRNA expression of human pulmonary artery smooth muscle cells (HPASMCs) in hypoxia, the cultured HPASMCs in vitro were stimulated with pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF κB. The NF κB p65 nuclei positive expression was detected by immunocytochemical technique. The IκBα protein expression was measured by Western blot. RT PCR was used to detect the VEGF mRNA expression of HPASMCs. The results showed that no significant change was observed in the NF κB p65 nuclei positive expression of cultured HPASMCs during 6 h-24 h in normoxia, but the levels of NF κB p65 nuclei positive expression of cultured HPASMCs were significantly increased in hypoxia groups as compared with those in all normoxia groups ( P <0.05). The IκBα protein expression of cultured HPASMCs showed no significant change during 6 h-24 h in normoxia, but significantly decreased in hypoxia as comapred with that in normoxia groups ( P <0.05). PDTC (1 to 100 μmol/L) could inhibit the VEGF mRNA expression of HPASMCs in a concentration dependent manner in hypoxia. In conclusion, NF κB can be partly translocation activated from cytoplasm into nuclei in the cultured HPASMCs under hypoxia. The inhibition of NF κB activation can decrease the VEGF mRNA expression. It is suggested that the activation of NF κB is involved in the VEGF mRNA expression of HPASMCs under hypoxia.
基金supported by the National Natural Science Foundation of China(No.82000300).
文摘Background:Pulmonary arterial hypertension(PAH)is a chronic and progressive disease that is strongly associated with dysregulation of glucose metabolism.Alterations in nuclear receptor subfamily 4 group A member 1(NR4A1)activity alter the outcome of PAH.This study aimed to investigate the effects of NR4A1 on glycolysis in PAH and its underlying mechanisms.Methods:This study included twenty healthy volunteers and twenty-three PAH patients,and plasma samples were collected from the participants.To mimic the conditions of PAH in vitro,a hypoxia-induced model of pulmonary artery smooth muscle cell(PASMC)model was established.The proliferation of PASMCs was assessed using CCK8 assays.Results:Levels of NR4A1,hypoxia-inducible factor-1α(HIF-1α),and various glycolysis-related enzymes were measured.In addition,extracellular glucose and lactate production were assessed.The interaction between NR4A1 and HIF-1αwas evaluated by co-immunoprecipitation assays.Levels of NR4A1 and HIF-1αwas increased in PAH patients,and exposure to hypoxia resulted in increased levels of NR4A1 and HIF-1αin PASMCs.NR4A1 interacted with HIF-1α.NR4A1 overexpression enhanced hypoxia-induced expression of HIF-1α,GLUT1,PKM2,HK2,and CD36,decreased glucose levels,increased lactate levels and promoted hypoxic PASMC viability.Conversely,silencing NR4A1 decreased hypoxia-induced expression of HIF-1α,GLUT1,PKM2,HK2,and CD36,promoted glucose production,reduced lactate levels and inhibited hypoxic PASMC viability.Furthermore,overexpression of HIF-1αreversed the regulation of glycolysis caused by NR4A1 knockdown.Conclusion:NR4A1 enhances glycolysis in hypoxia-induced PASMCs by upregulating HIF-1α.Our findings indicate that the management of NR4A1 activity may be a promising strategy for PAH therapy.
基金This project was supported by a grant from Provincial Outstanding Youth Program for Henan Province Committee of Sciences and Technology (No. 19972002).
文摘The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL was isolated and purified from human plasma. Ox-LDL was produced from LDL by being incubated with CuSO4. ox-LDL was then added to the culture medium at different concentrations (35, 60, 85, 110, 135 and 160μg/mL) for 7 days. The influence of ox-LDL on vSMC proliferation was observed in growth curve, mitosis index, and in situ determination of apoptosis. The data were analyzed with SPSS 10.0 software. The results showed that the ox-LDL produced in vitro had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque, ox-LDL at a concentration of 35 μg/mL demonstrated the strongest proliferation inducement, and at a concentration of 135 μg/mL, ox-LDL could inhibit the growth of vSMC. ox-LDL at concentrations of 35 and 50 μg/mL presented powerful mitotic trigger, and with the increase of ox-LDL concentration, the mitotic index of vSMC was decreased gradually, ox-LDL at higher concentrations promoted more apoptotic vSMCs, ox-LDL at lower concentrations triggered proliferation of vSMCs, and at higher concentrations induced apoptosis in vSMCs, ox-LDL played a promotional role in the pathogenesis and development of atherosclerosis by affecting vSMC proliferation and apoptosis.
文摘Objective To investigate the effect of gelatin coated Platinium-Iridium stent absorbed c-myc antisense oligodeoxynucleotide (ASODN) on smooth muscle cells apoptosis in a normal rabbit carotid arteries. Methods Gelatin coated Platinium-Iridium stents were implanted in the right carotid arteries of 32 rabbits under vision. Animals were randomly divided into control group and treated group receiving c-myc ASODN ( n =16, respectively). On 7, 14, 30 and 90 days following the stenting procedure ,morphometry for caculation of neointimal area and mean neointimal thickness were performed.The expression of c-myc protein was detected by immunohistochemical method. Apoptotic smooth muscle cells was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL). Results At 7 and 14 days after stenting,there were no detectable apoptotic cells in both groups. The apoptotic cells occurred in the neointima 30 and 90 days after stenting, and the number of apoptotic cells at 30 days were less [4.50±1.29 vs 25.75±1.89 (number/0.1mm 2)] than that at 90 days [13.50±1.91 vs 41.50±6.46 (number/0.1mm 2)]. Meanwhile c-myc ASODN induced more apoptotic cells than the control group( P <0.0001). c-myc protein expression was weak positive or negative in treated group and positive in control group.Conclusion c-myc ASODN can induce smooth muscle cells apoptosis after stenting in normal rabbit carotid arteries,and it can be used to prevent in-stent restenosis.
文摘By using Ca2+ -sensitive fluorescent probe, Fura-2 , the effects of endothelial cell-conditioned medium and hypoxia on intracellular free calcium ( [Ca2+]i) in cultured pulmonary artery smooth muscle cell (PASMC) were studied. Normoxic porcine pulmonary artery endothelial cell-conditioned medium (NPAECCM) obviously elevated [Ca2+]i in PASMC,whereas the hypoxic porcine pulmonary artery endothelial cell conditioned medium (HPAECCM)significantly elevated [Ca2+]i in PASMC much more than NPAECCM. Both the effects of NPAECCM and HPAECCM were dependent on the cultured endothelial cell extracellular calcium concentrations, ranged from 1.8 mmol/L to 2. 4 mmol/L.Meanwhile, hypoxia directly increased, which was partially inhibited by verapamil,[Ca2+]i in PASMC through Ca2+ influx pathway.The data suggest that the augmented regulation of endothelial cell on PASMC via Ca2+ second messenger system and the hypoxia-induced Ca2+ influx into PASMC,particularly the former, may be components of mechanisms underlying hypoxic pulmonary vasoconstriction and chronic pulmonary hypertension.
文摘Angiotensin II (Ang II) is the main mediator of the Renin-Angiotensin-System acting on AT<sub>1</sub> and other AT receptors. It is regarded as a pleiotropic agent that induces many actions, including functioning as a growth factor, and as a contractile hormone, among others. The aim of this work was to examine the impact of Ang II on the expression and function of α<sub>1</sub>-adrenergic receptors (α<sub>1</sub>-ARs) in cultured rat aorta, and aorta-derived smooth muscle cells. Isolated Wistar rat aorta was incubated for 24 h in DMEM at 37˚C, then subjected to isometric tension and to the action of added norepinephrine, in concentration-response curves. Ang II was added (1 × 10<sup>−5</sup> M), and in some experiments, 5-Methylurapidil (α<sub>1A</sub>-AR antagonist), AH11110A (α<sub>1B</sub>-AR antagonist), or BMY-7378 (α<sub>1D</sub>-AR antagonist), were used to identify the α<sub>1</sub>-AR involved in the response. Desensitization of the contractile response to norepinephrine was observed due to incubation time, and by the Ang II action. α<sub>1D</sub>-AR was protected from desensitization by BMY-7378;while RS-100329 and prazosin partially mitigated desensitization. In another set of experiments, isolated aorta-derived smooth muscle cells were exposed to Ang II and α<sub>1</sub>-ARs proteins were evaluated. α<sub>1D</sub>-AR increased at 30 and 60 min post Ang II exposure, the α<sub>1A</sub>-AR diminished from 1 to 4 h, while α<sub>1B</sub>-AR remained unchanged over 24 h of Ang II exposure. Ang II induced an increase of α<sub>1D</sub>-AR at short times, and BMY-7378 protected α<sub>1D</sub>-AR from desensitization.
文摘The neonate is particularly susceptible to the development of hypoxic pulmonary hypertension. The present study was undertaken to observe the effect of hypoxia on DNA synthesis and c-myc gene expression between newborn calf and adult bovine PASMC in vilro. DNA synthesis measured by 3H- TdR incorporation was increased after hypoxic challenge for 24h. Hypoxia enhanced the increment in 3H-TdR incorporation induced by EGF. Northern blot analysis revealed that PASMC cultured in both normoxia and hypoxia expressed c- myc gene transcript of 2. 2Kb ,but there is a higher 2. 2Kb mRNA expression in hypoxic PASMC than that in normoxia. We speculate that newborn calf PASMC exhibited potential response to hypoxia than adult,which was augmented by EGF. Enhanced c-myc gene expression may lead to a great understanding of the mechanism of PASMC growth in the development of pulmonary hypertension.
基金Supported by the Chinese National Natural Science Foundation(30400596)The Jinan University Natural Science Foundation(51204017)The Science and Technology Innovation Project for Undergraduates of Jinan University(CX07080)
文摘The aim of this study was to establish a method of isolating and culturing smooth muscle cells from the ductus deferens of rats. Smooth muscle cells were prepared from ductus deferens by explanting technique after dissection of adventitia and intimae, and cultured in vitro. The identification of the smooth muscle cells were verified by using anti u-smooth muscle actin (a-SMA) immunohistochemistry studies. The result suggested that the cells are multi-morphous, showing long fusiform or star shapes. The apophysis of cells contacted and coalesced to each other, in some regions the cells overlapped in multilayer, while in the other regions they formed monolayer that fluctuated and showed a "peak-valley" shape. They presented a positive reaction through immunohistochemistry studies. The purity of the cells was more than 99% through this method. The culturing of smooth muscle cells by explanting technique is simple and stable.
基金supported by the National Natural Science Foundation of Hubei Province(No.2018CFC801).
文摘Objective This study aimed to investigate the effects of the peroxisome proliferator-activated receptorδ(PPARδ)agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells(PASMCs)induced by hypoxia,in order to search for new drugs for the treatment and prevention of pulmonary vascular remodeling.Methods PASMCs were incubated with different concentrations of GW501516(10,30,100 nmol/L)under the hypoxic condition.The proliferation was determined by a CCK-8 assay.The cell cycle progression was analyzed by flow cytometry.The expression of PPARδ,S phase kinase-associated protein 2(Skp2),and cell cycle-dependent kinase inhibitor p27 was detected by Western blotting.Then PASMCs were treated with 100 nmol/L GW501516,100 nmol/L mammalian target of rapamycin(mTOR)inhibitor rapamycin and/or 2µmol/L mTOR activator MHY1485 to explore the molecular mechanisms by which GW501516 reduces the proliferation of PASMCs.Results The presented data demonstrated that hypoxia reduced the expression of PPARδin an oxygen concentration-and time-dependent manner,and GW501516 decreased the proliferation of PASMCs induced by hypoxia by blocking the progression through the G0/G1 to S phase of the cell cycle.In accordance with these findings,GW501516 downregulated Skp2 and upregulated p27 in hypoxia-exposed PASMCs.Further experiments showed that rapamycin had similar effects as GW501516 in inhibiting cell proliferation,arresting the cell cycle,regulating the expression of Skp2 and p27,and inactivating mTOR in hypoxia-exposed PASMCs.Moreover,MHY1485 reversed all the beneficial effects of GW501516 on hypoxia-stimulated PASMCs.Conclusion GW501516 inhibited the proliferation of PASMCs induced by hypoxia through blocking the mTOR/Skp2/p27 signaling pathway.
文摘The effects of sodium ferulate(SF), a water-soluble element of Chinese medicine Angelica sinensis diels, on cell-mediated oxidative modification of human low density lipoprotein(LDL) and proliferation of rabbit aortic smooth muscle cells(SMCs) were investigated. Using experimental models of proliferation of cultured rabbit aortic SMCs induced by oxidized LDL(ox-LDL), the extent of oxidation was determined by thiobarbituric acid reactive substances(TBARS) method, MTT colorimetry and 3H-thymidine(3H-TdR) incorporation were used to observe proliferation of SMCs. It showed that SF effectively inhibited cell-mediated oxidation induced by Cu2+ in a concentration-dependent manner. At the final concentration of 40, 80, 120 gmL-1, SF could significantly inhibit 3H-TdR incorporation and cell Proliferation in a dose-dependent manner. The results indicated that SF could, in vitro protect LDL against oxidative modification and inhibit the proliferation of SMC, which might be due to its free radical scavenging capacity.
文摘Objective: To investigate the effect of intravascular in radiation on thearterial wall smooth muscle cells (SMCs) proliferation and apoptosis after iliac artery bollominjury in figs. Methods: Twenty-seven miniature figs were divided into three groups. All pigsunderwent iliac artery balloon over-stretch. An^(192) Ir source through afterloader was positionedat the injuried segments to give 10 Gy in 9 pigs and 20 Gy in the other 9 pigs, and the rest 9 pigswere, used as control group. The pigs were killed on the 3rd, 10th and 28th days respectively forobservation. The injured segments were processed to examine SMCs proliferation by proliferation cellnuclear antigen (PCNA) and apopto-sis by terminal deoxynucleotidyl transferase-mediated dUTPnick-end labeling (TUNEL). Results: PC-NA index analysis has some that SMCs proliferation inneointima was significantly inhibited in irradiation group on the 10th and 28th days. The value forintimal SMCs apoptosis in control vs 10 Gy and 20 Gy irradiation groups were: (1. 185+-0. 49)% vs(2. 27+-0. 49)%(P>0. 05) and (1. 85+-0. 49)% vs (2. 53+-0. 45)%(P<0. 05), at the 10th day; (1.61+-0. 35)% vs (3. 11+-0. 51)%(P<0. 05), and (1.61+-0. 35)% vs (7. 05+-1. 82)% (P<0. 05), on the28th day. In irradiated arteries, the maximal incidence of intimal SMCs apoptosis was (7. 05+--1.82)% in 20 Gy group vs (3. 11+-0. 51)% in 10 Gy group (P<0. 05), on the 28th day. In the same doseirradiation group, the incidence of intimal SMCs apoptosis was higher on the 28th day than that onthe 10th day. Conclusion: Intra-arterial gamma irradiation can inhibit intimal SMCs proliferationand stimulate SMCs apoptosis in balloon-in jured arteries. These may be contributive to preventionof restenosis of arteries after balloon injury.
基金National Natural Science Foundation of China(No.30170368)
文摘Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter was constructed by reporter gene system and was transiently transfected into VSMCs and THP-1 in vitro. The promoter activity was tested by luciferase activity with or without LPS and Ang Ⅱ stimulation, before and after different dosage of As2O3 treatment. Results 1. TNF-α promoter effectively expressed in VSMCs and THP-1 compared with CMV promoter (58.3% and 80.9%, respectively). Both LPS and Ang Ⅱ significantly up-regulated TNF-α promoter activity (P〈0.05). 2. As2O3 significantly inhibited, both intact and LPS/Ang Ⅱ stimulated promoter activity, in a dose dependent manner (P〈0.05), and in both cell type. Conclusion These results manifested that, the inhibition effect of As2O3 on the activity of human TNF-α promoter indicated its potential inhibition on pro-inflammatory cytokine genes expression at transcriptional level and its potential anti-inflammatory property in the cardiovascular system.
文摘Objective: This study aims to investigate the effects of urocortin (Ucn) on the viability of endothelial cells (ECV304) and rat vascular muscle cells (VSMC). Methods: Rat aortic VSMC were isolated from the rats' thoracic aorta. We studied the effect of Ucn on the viability of ECV304 cells and VSMC by using a tetrazolium (MTT) assay.Results: Ucn (10 -7 mol/L) inhibited the viability of ECV304 cells and VSMC. Inhibition rates are 13% and 15%, respectively(P<0.05, compared with Control). This inhibition was not dependent on the affecting time and was not affected by the addition of ATP-sensitive potassium channel (KATP channel) blocker, glybenclamide (Gly, 10 mol/L). Conclusion: Ucn inhibits the viability of ECV304 and VSMC. Our results suggest that Ucn may be a new vasoactive agent and may have a beneficial effect in the process of vascular remodeling (VR).
基金Acknowledgment We are grateful to Dr Tamotsu Yoshimori for providing the GFP-LC3 plasmid and Dr H. Seimiya for providing the tankyrase 1 plasmid. This study was supported by the National Natural Science Foundation of China (No. 30772285) and Beijing Municipal Commission of Science Technology, China (No. Z080507030808011).
文摘This study compared tankyrase 1 expression and autophagy quantity between erectile dysfunction (ED) and non-ED rats' corpus cavernosum smooth muscle cells (CSMCs). This study aslo explored the effect and possible mechanism of tankyrase 1 on autophagy and cell proliferation in ageing ED rats' CSMCs. The intracavernous pres- sure and mean systemic arterial pressure were measured to investigate erectile function so that eight 24-month-old ED and eight 8-month-old male Wistar rats were choosed respectively. The rat CSMCs were isolated and cultured by enzyme digestion, in which tankyrase 1 expression and autophagy quantity were compared. Tankyrase 1 over-expression was induced with plasmid transfection by Lipofectamine^TM. The effect of tankyrase 1 overexpression on proliferation, autophagy and mTOR pathway in 24-month-old ED rats' CSMCs was measured by the cell growth curve in MTT assay, cell cycle analysis in flow cytometry (FCM), key protein expression in Western blot, autophagy quantity in transmission electron microscopy, monodansylcadaverine staining and GFP-LC3 fluorescence. The primary CSMCs were confirmed by immunofluorescence, and the purity was 99.1% in FCM. Compared with that of 8-month-old rats, tankyrase 1 expression and autophagy quantity significantly decreased in 24-month-old ED rats' primary CSMCs (P 〈 0.01). Tankyrase 1 overexpression significantly increased the growth rate (P 〈 0.05) and increased the S phase of cell cycle (P 〈 0.01). The autophagosome quantity was remarkably increased (P 〈 0.01), LC3-Ⅰ/Ⅱ and Beclin 1 were upregulated (P 〈 0.01 and P 〈 0.05), and p-p70S6K (Thr389) was downregulated in 24-month-old ED rat CSMCs (P 〈 0.05). In conclusion, Tankyrase 1 and autophagy decrease in the CSMCs from aging rats with ED, and tankyrase 1 may have a positive effect on proliferation by enhancing autophagy and regulating the mTOR signalling pathway.