Free surface flows are of significant interest in Computational Fluid Dynamics(CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge ...Free surface flows are of significant interest in Computational Fluid Dynamics(CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge for many CFD techniques. Smoothed Particle Hydrodynamics(SPH) has been reported as a robust and reliable method for simulating violent free surface flows. Weakly compressible SPH(WCSPH) uses an equation of state with a large sound speed, and the results of the WCSPH can induce a noisy pressure field and spurious oscillation of pressure in time history for wave impact problem simulation. As a remedy, the truly incompressible SPH(ISPH) technique was introduced, which uses a pressure Poisson equation to calculate the pressure. Although the pressure distribution in the whole field obtained by ISPH is smooth, the stability of the techniques is still an open discussion. In this paper, a new free surface identification scheme and solid boundary handling method are introduced to improve the accuracy of ISPH. This modified ISPH is used to study dam breaking flow and violent tank sloshing flows. On the comparative study of WCSPH and ISPH, the accuracy and efficiency are assessed and the results are compared with the experimental data.展开更多
Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action...Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action. Accurate estimates of groundwater discharge may be valuable in improving decision support systems of hydrogeological resource exploitation. The present study performs a forecast for groundwater discharge in Aquifer?s Cervialto Mountains(southern Italy). A time series starting in 1883 was the basis for longterm predictions. An Ensemble Discharge Prediction(EDis P) was applied, and the progress of the discharge ensemble forecast was inferred with the aid of an Exponential Smoothing(ES) model initialized at different annual times. EDisP-ES hindcast model experiments were tested, and discharge plume-patterns forecast was assessed with horizon placed in the year 2044. A 46-year cycle pattern was identified by comparing simulations and observations, which is essential for the forecasting purpose. ED is P-ES performed an ensemble mean path for the coming decades that indicates a discharge regime within ± 1 standard deviation around the mean value of 4.1 m^3 s^(-1). These fluctuations are comparable with those observed in the period 1961-1980 and further back, with changepoints detectable around the years 2025 and 2035. Temporary drought conditions are expected after the year 2030.展开更多
It is desired to resolve soil contamination with reduced costs. “Insoluble treatment” is a soil improvement method for heavy metal containing soil, which uses soil mixers to mix soil and soil improvement liquid agen...It is desired to resolve soil contamination with reduced costs. “Insoluble treatment” is a soil improvement method for heavy metal containing soil, which uses soil mixers to mix soil and soil improvement liquid agents. To reduce the costs of this method, soil mixers have to be optimized. However, it is not achieved due to the lack of theoretical knowledge on mixing solid with liquid. Therefore, a numerical model to simulate the dynamic behavior of solid and liquid is on the development in this study using Smoothed Particle Hydrodynamics (SPH) method. To validate the numerical model, several experiments were carried out and numerically reproduced. The comparisons of the results showed that the numerical model replicated a liquid flow with an error rate of 2.1% and a seepage flow with an error rate up to 26.1%. Especially, the water distribution in the soil pores was highly improved with absolute gaps in volumetric water content up to 4.4% in the porosity range of 10% - 90%. For the water absorption into dry sand, the simulation result became more realistic by concerning soil suction.展开更多
基金supported by the National Natural Science Foundations of China(Grant Nos.51009034 and 51279041)Fundamental Research Funds for the Central Universities(Grant Nos.HEUCDZ1202 and HEUCF120113)Pre-Research Foundation of General Armament Department of China(Grant No.9140A14020712CB01158)
文摘Free surface flows are of significant interest in Computational Fluid Dynamics(CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge for many CFD techniques. Smoothed Particle Hydrodynamics(SPH) has been reported as a robust and reliable method for simulating violent free surface flows. Weakly compressible SPH(WCSPH) uses an equation of state with a large sound speed, and the results of the WCSPH can induce a noisy pressure field and spurious oscillation of pressure in time history for wave impact problem simulation. As a remedy, the truly incompressible SPH(ISPH) technique was introduced, which uses a pressure Poisson equation to calculate the pressure. Although the pressure distribution in the whole field obtained by ISPH is smooth, the stability of the techniques is still an open discussion. In this paper, a new free surface identification scheme and solid boundary handling method are introduced to improve the accuracy of ISPH. This modified ISPH is used to study dam breaking flow and violent tank sloshing flows. On the comparative study of WCSPH and ISPH, the accuracy and efficiency are assessed and the results are compared with the experimental data.
文摘Groundwater extraction is used to alleviate drought in many habitats. However, widespread drought decreases spring discharge and there is a need to integrate climate change research into resource management and action. Accurate estimates of groundwater discharge may be valuable in improving decision support systems of hydrogeological resource exploitation. The present study performs a forecast for groundwater discharge in Aquifer?s Cervialto Mountains(southern Italy). A time series starting in 1883 was the basis for longterm predictions. An Ensemble Discharge Prediction(EDis P) was applied, and the progress of the discharge ensemble forecast was inferred with the aid of an Exponential Smoothing(ES) model initialized at different annual times. EDisP-ES hindcast model experiments were tested, and discharge plume-patterns forecast was assessed with horizon placed in the year 2044. A 46-year cycle pattern was identified by comparing simulations and observations, which is essential for the forecasting purpose. ED is P-ES performed an ensemble mean path for the coming decades that indicates a discharge regime within ± 1 standard deviation around the mean value of 4.1 m^3 s^(-1). These fluctuations are comparable with those observed in the period 1961-1980 and further back, with changepoints detectable around the years 2025 and 2035. Temporary drought conditions are expected after the year 2030.
文摘It is desired to resolve soil contamination with reduced costs. “Insoluble treatment” is a soil improvement method for heavy metal containing soil, which uses soil mixers to mix soil and soil improvement liquid agents. To reduce the costs of this method, soil mixers have to be optimized. However, it is not achieved due to the lack of theoretical knowledge on mixing solid with liquid. Therefore, a numerical model to simulate the dynamic behavior of solid and liquid is on the development in this study using Smoothed Particle Hydrodynamics (SPH) method. To validate the numerical model, several experiments were carried out and numerically reproduced. The comparisons of the results showed that the numerical model replicated a liquid flow with an error rate of 2.1% and a seepage flow with an error rate up to 26.1%. Especially, the water distribution in the soil pores was highly improved with absolute gaps in volumetric water content up to 4.4% in the porosity range of 10% - 90%. For the water absorption into dry sand, the simulation result became more realistic by concerning soil suction.