In this paper, a class of smoothing modulus-based iterative method was presented for solving implicit complementarity problems. The main idea was to transform the implicit complementarity problem into an equivalent im...In this paper, a class of smoothing modulus-based iterative method was presented for solving implicit complementarity problems. The main idea was to transform the implicit complementarity problem into an equivalent implicit fixed-point equation, then introduces a smoothing function to obtain its approximation solutions. The convergence analysis of the algorithm was given, and the efficiency of the algorithms was verified by numerical experiments.展开更多
The authors are concerned with a class of derivative nonlinear Schr¨odinger equation iu_t + u_(xx) + i?f(u, ū, ωt)u_x=0,(t, x) ∈ R × [0, π],subject to Dirichlet boundary condition, where the nonlinearity...The authors are concerned with a class of derivative nonlinear Schr¨odinger equation iu_t + u_(xx) + i?f(u, ū, ωt)u_x=0,(t, x) ∈ R × [0, π],subject to Dirichlet boundary condition, where the nonlinearity f(z1, z2, ?) is merely finitely differentiable with respect to all variables rather than analytic and quasi-periodically forced in time. By developing a smoothing and approximation theory, the existence of many quasi-periodic solutions of the above equation is proved.展开更多
文摘In this paper, a class of smoothing modulus-based iterative method was presented for solving implicit complementarity problems. The main idea was to transform the implicit complementarity problem into an equivalent implicit fixed-point equation, then introduces a smoothing function to obtain its approximation solutions. The convergence analysis of the algorithm was given, and the efficiency of the algorithms was verified by numerical experiments.
基金supported by the National Natural Science Foundation of China(No.11201292)Shanghai Natural Science Foundation(No.12ZR1444300)the Key Discipline"Applied Mathematics"of Shanghai Second Polytechnic University(No.XXKZD1304)
文摘The authors are concerned with a class of derivative nonlinear Schr¨odinger equation iu_t + u_(xx) + i?f(u, ū, ωt)u_x=0,(t, x) ∈ R × [0, π],subject to Dirichlet boundary condition, where the nonlinearity f(z1, z2, ?) is merely finitely differentiable with respect to all variables rather than analytic and quasi-periodically forced in time. By developing a smoothing and approximation theory, the existence of many quasi-periodic solutions of the above equation is proved.