In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be proces...In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.展开更多
A MNSM( mirror neuron system mechanism)-based controller is developed to present the swimming rhythm of a snake-like robot in Cartesian space. From engineering viewpoint,the proposed controller is composed of a neuron...A MNSM( mirror neuron system mechanism)-based controller is developed to present the swimming rhythm of a snake-like robot in Cartesian space. From engineering viewpoint,the proposed controller is composed of a neuron for rhythm angle and two neurons for motion knowledge in XY plane. The given knowledge is a rhythm curve for swimming motion of a snake-like robot. Experimental results show that the proposed controller can present the knowledge of swimming rhythm,which represents the corresponding control law to drive the snake-like robot to swim with different speeds and turning motion. This work provides a novel method to present the knowledge for swimming motion of snake-like robots.展开更多
In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller...In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller to stabilize the head of the underwater snake-like robot. The advantage of the CPG-based control scheme with head-controller is that the head of the underwater snake-like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed.The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation( the input of headcontroller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology,the different swimming modes have been implemented in our simulation platform.The results show that the oscillation of head's orientation is inhibited effectively,and the proposed method has strong adaptation to environment and CPG parameters changes.展开更多
From a bionics viewpoint , this paper proposes a mechanical model of a wheeled snake like mobile mechanism. On the hypothesis of the existing non holonomic constraints on the robot kinematics, we set up the relation...From a bionics viewpoint , this paper proposes a mechanical model of a wheeled snake like mobile mechanism. On the hypothesis of the existing non holonomic constraints on the robot kinematics, we set up the relationship among the kinetic control parameters in the snake like movement using Lie group and Lie algebra of the principle fiber bundle and provide some theoretical control methods to realize the snake like locomotion.展开更多
In this paper, a dynamic model for an underwater snake-like robot is developed based on Kane's dynamic equations. This methodology allows construction of the dynamic model simply and incrementally. The partial vel...In this paper, a dynamic model for an underwater snake-like robot is developed based on Kane's dynamic equations. This methodology allows construction of the dynamic model simply and incrementally. The partial velocity is deduced. The forces which contribute to dynamics are determined by Kane's approach. The generalized active forces and the generalized inertia forces are deduced. The model developed in this paper includes inertia force, inertia moment, gravity, control torques, and three major hydrodynamic forces: added mass, profile drag and buoyancy. The equations of hydrodynamic forces are deduced. Kane's method provides a direct approach for incorporating external environmental forces into the model. The dynamic model developed in this paper is obtained in a closed form which is well suited for control purposes. It is also computationally efficient and has physical insight into what forces really influence the system dynamics. The simulation result shows that the proposed method is feasible.展开更多
A systematic method for swimming control of the underwater snake-like robot is still lacking. We construct a simulation platform of the underwater snake-like robot swimming based on Kane's dynamic model and centra...A systematic method for swimming control of the underwater snake-like robot is still lacking. We construct a simulation platform of the underwater snake-like robot swimming based on Kane's dynamic model and central pattern generator(CPG). The partial velocity is deduced. The forces which contribute to dynamics are determined by Kane's approach. Hydrodynamic coefficients are determined by experiments. Then, we design a CPG-based control architecture implemented as the system of coupled nonlinear oscillators. The CPG, like its biological counterpart, can produce coordinated patterns of rhythmic activity while being modulated by simple control parameters. The relations between the CPG parameters and the speed of the underwater snake-like robot swimming are investigated. Swimming in a straight line, turning, and switching between swimming modes are implemented in our simulation platform to prove the feasibility of the proposed simulation platform. The results show that the simulation platform can imitate different swimming modes of the underwater snake-like robot.展开更多
With slim and legless body, particular ball articulation, and rhythmic locomotion, a nature snake adapted itself to many terrains under the control of a neuron system. Based on analyzing the locomotion mechanism, the ...With slim and legless body, particular ball articulation, and rhythmic locomotion, a nature snake adapted itself to many terrains under the control of a neuron system. Based on analyzing the locomotion mechanism, the main functional features of the motor system in snakes are specified in detail. Furthermore, a bidirectional cyclic inhibitory (BCl) CPG model is applied for the first time to imitate the pattern generation for the locomotion control of the snake-like robot, and its characteristics are discussed, particularly for the generation of three kinds of rhythmic locomotion. Moreover, we introduce the neuron network organized by the BCI-CPGs connected in line with unilateral excitation to switch automatically locomotion pattern of a snake-like robot under different commands from the higher level control neuron and present a necessary condition for the CPG neuron network to sustain a rhythmic output. The validity for the generation of different kinds of rhythmic locomotion modes by the CPG network are verified by the dynamic simulations and experiments. This research provided a new method to model the generation mechanism of the rhythmic pattern of the snake.展开更多
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.
基金Supported by the National Natural Science Foundation of China(No.61333016)
文摘A MNSM( mirror neuron system mechanism)-based controller is developed to present the swimming rhythm of a snake-like robot in Cartesian space. From engineering viewpoint,the proposed controller is composed of a neuron for rhythm angle and two neurons for motion knowledge in XY plane. The given knowledge is a rhythm curve for swimming motion of a snake-like robot. Experimental results show that the proposed controller can present the knowledge of swimming rhythm,which represents the corresponding control law to drive the snake-like robot to swim with different speeds and turning motion. This work provides a novel method to present the knowledge for swimming motion of snake-like robots.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In prior research,the orientation of head of the snake-like robot is changed according to the sinusoidal wave. To solve this problem,we propose Central Pattern Generator( CPG)-based control scheme with head-controller to stabilize the head of the underwater snake-like robot. The advantage of the CPG-based control scheme with head-controller is that the head of the underwater snake-like robot is direct to the target orientation during swimming. The relation between CPG parameters and orientation stability of head is discussed.The adaptation of the proposed method to environment changes is tested. The influences of CPG parameters and hydrodynamic forces on the orientation offset of head are investigated. The target orientation( the input of headcontroller) with an experimental optimization is calculated through a convenient method. To prove the feasibility of the proposed methodology,the different swimming modes have been implemented in our simulation platform.The results show that the oscillation of head's orientation is inhibited effectively,and the proposed method has strong adaptation to environment and CPG parameters changes.
文摘From a bionics viewpoint , this paper proposes a mechanical model of a wheeled snake like mobile mechanism. On the hypothesis of the existing non holonomic constraints on the robot kinematics, we set up the relationship among the kinetic control parameters in the snake like movement using Lie group and Lie algebra of the principle fiber bundle and provide some theoretical control methods to realize the snake like locomotion.
基金the National Natural Science Foundation of China(No.51009091)the Special ResearchFund for the Doctoral Program of Higher Education ofChina(No.20100073120016)
文摘In this paper, a dynamic model for an underwater snake-like robot is developed based on Kane's dynamic equations. This methodology allows construction of the dynamic model simply and incrementally. The partial velocity is deduced. The forces which contribute to dynamics are determined by Kane's approach. The generalized active forces and the generalized inertia forces are deduced. The model developed in this paper includes inertia force, inertia moment, gravity, control torques, and three major hydrodynamic forces: added mass, profile drag and buoyancy. The equations of hydrodynamic forces are deduced. Kane's method provides a direct approach for incorporating external environmental forces into the model. The dynamic model developed in this paper is obtained in a closed form which is well suited for control purposes. It is also computationally efficient and has physical insight into what forces really influence the system dynamics. The simulation result shows that the proposed method is feasible.
基金the National Natural Science Foundation of China(No.51009091)the Special Research Fund for the Doctoral Program of Higher Education of China(No.20100073120016)
文摘A systematic method for swimming control of the underwater snake-like robot is still lacking. We construct a simulation platform of the underwater snake-like robot swimming based on Kane's dynamic model and central pattern generator(CPG). The partial velocity is deduced. The forces which contribute to dynamics are determined by Kane's approach. Hydrodynamic coefficients are determined by experiments. Then, we design a CPG-based control architecture implemented as the system of coupled nonlinear oscillators. The CPG, like its biological counterpart, can produce coordinated patterns of rhythmic activity while being modulated by simple control parameters. The relations between the CPG parameters and the speed of the underwater snake-like robot swimming are investigated. Swimming in a straight line, turning, and switching between swimming modes are implemented in our simulation platform to prove the feasibility of the proposed simulation platform. The results show that the simulation platform can imitate different swimming modes of the underwater snake-like robot.
基金Supported in part by the National Natural Science Foundation of China (Grant No. 60375029)the National Hi-tech Research and Development Plan (Grant No. 2001AA422360)the Japan Society for the Promotion of Science Grants-in-Aid (Grant No. 15360129)
文摘With slim and legless body, particular ball articulation, and rhythmic locomotion, a nature snake adapted itself to many terrains under the control of a neuron system. Based on analyzing the locomotion mechanism, the main functional features of the motor system in snakes are specified in detail. Furthermore, a bidirectional cyclic inhibitory (BCl) CPG model is applied for the first time to imitate the pattern generation for the locomotion control of the snake-like robot, and its characteristics are discussed, particularly for the generation of three kinds of rhythmic locomotion. Moreover, we introduce the neuron network organized by the BCI-CPGs connected in line with unilateral excitation to switch automatically locomotion pattern of a snake-like robot under different commands from the higher level control neuron and present a necessary condition for the CPG neuron network to sustain a rhythmic output. The validity for the generation of different kinds of rhythmic locomotion modes by the CPG network are verified by the dynamic simulations and experiments. This research provided a new method to model the generation mechanism of the rhythmic pattern of the snake.