A novel 4 H-Si C merged P–I–N Schottky(MPS)with floating back-to-back diode(FBD),named FBD-MPS,is proposed and investigated by the Sentaurus technology computer-aided design(TCAD)and analytical model.The FBD feature...A novel 4 H-Si C merged P–I–N Schottky(MPS)with floating back-to-back diode(FBD),named FBD-MPS,is proposed and investigated by the Sentaurus technology computer-aided design(TCAD)and analytical model.The FBD features a trench oxide and floating P-shield,which is inserted between the P+/N-(PN)junction and Schottky junction to eliminate the shorted anode effect.The FBD is formed by the N-drift/P-shield/N-drift and it separates the PN and Schottky active region independently.The FBD reduces not only the Vturn to suppress the snapback effect but also the Von at bipolar operation.The results show that the snapback can be completely eliminated,and the maximum electric field(Emax)is shifted from the Schottky junction to the FBD in the breakdown state.展开更多
文摘A novel 4 H-Si C merged P–I–N Schottky(MPS)with floating back-to-back diode(FBD),named FBD-MPS,is proposed and investigated by the Sentaurus technology computer-aided design(TCAD)and analytical model.The FBD features a trench oxide and floating P-shield,which is inserted between the P+/N-(PN)junction and Schottky junction to eliminate the shorted anode effect.The FBD is formed by the N-drift/P-shield/N-drift and it separates the PN and Schottky active region independently.The FBD reduces not only the Vturn to suppress the snapback effect but also the Von at bipolar operation.The results show that the snapback can be completely eliminated,and the maximum electric field(Emax)is shifted from the Schottky junction to the FBD in the breakdown state.