期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Classification of snow cover days in western China and comparison with satellite remote sensing data 被引量:2
1
作者 LiYe He DongLiang Li Lian Chen 《Research in Cold and Arid Regions》 2012年第3期249-258,共10页
The daily snow cover data from 232 meteorological stations to the west of 105°E in China for the period 1951-2004 were used to classify the snow cover and analyze decadal variations of snow cover types in western... The daily snow cover data from 232 meteorological stations to the west of 105°E in China for the period 1951-2004 were used to classify the snow cover and analyze decadal variations of snow cover types in western China, and comparison was made between the observational data and those retrieved from passive microwave remote sensing data (SMMR and SSM/I) in 1980-2004. The results show that stable snow-covered areas included northern Xinjiang, the Tianshan Mountains, and the eastern Tibetan Plateau with more than 60 snow cover days; no snow cover was found in the center of the southern Xinjiang Basin, the Sichuan Basin, and southern Yunnan. In addition to the above-mentioned, there were unstable snow-covered areas in western China. Furthermore, the snow cover types in northern Xinjiang, the Tianshan Mountains, the Hexi Corridor, and the vast areas from Chengdu to Kunming were unchanged. In the 1980s, the south-north dividing line between the major snow-covered area and snow-free area advanced to its most southern position. The snow cover days calculated from satellite remote sensing were generally longer than those from observational data in western China, mainly in the higher-altitude mountains, the Hexi Corridor, and the western Sichuan Plateau. 展开更多
关键词 western China snow cover days types of snow cover satellite remote sensing
下载PDF
Comparison and analysis of snow cover data based on dif-ferent definitions of snow cover days 被引量:1
2
作者 Di An DongLiang Li Yun Yuan 《Research in Cold and Arid Regions》 2011年第1期51-60,共10页
In order to analyze the differences between the two snow cover data, the snow cover data of 884 meteorological stations in China from 1951 to 2005 are counted. The data include days of visual snow observation, snow de... In order to analyze the differences between the two snow cover data, the snow cover data of 884 meteorological stations in China from 1951 to 2005 are counted. The data include days of visual snow observation, snow depth, and snow cover durations, which vary according to different definitions of snow cover days. Two series of data, as defined by "snow depth" and by "weather obser- vation," are investigated here. Our results show that there is no apparent difference between them in east China and the Xinjiang region, but in northeast China and the Tibetan Plateau the "weather observation" data vary by more than 10 days and the "snow depth" data vary by 0.4 cm. Especially in the Tibetan Plateau, there are at least 15 more days of"weather observation" snow in most areas (sometimes more than 30 days). There is an obvious difference in the snow cover data due to bimodal snowfall data in the Tibetan Plateau, which has peak snowfalls from September to October and from .April to May. At those times the temperature is too high for snow cover fol:mation mad only a few days have trace snow cover. Also, the characteristics and changing trends of snow cover are analyzed here based on the snow cover data of nine weather stations iri the northeast region of the Tibetan Plateau, by the Mann-KendaU test. The results show significantly fewer days of snow cover and shorter snow dtwations as defined by "snow depth" compared to that as defined by "weather observation." Mann-Kendall tests of both series of snow cover durations show an abrupt change in 1987. 展开更多
关键词 weather observation days of snow cover depth of snow durations
下载PDF
Analysis on the Climatic Change Characteristics of the Snow Cover Days and Its Influence Factors in Suzhou during Recent 50 Years
3
作者 ZHAO Xue-song WANG Dong ZHOU Gui-bin 《Meteorological and Environmental Research》 CAS 2011年第9期40-42,共3页
[Objective] The research aimed to study climatic variation characteristics of snow cover days and its influence factors in Suzhou of Anhui Province during recent 50 years. [Method] According to annual snow cover days ... [Objective] The research aimed to study climatic variation characteristics of snow cover days and its influence factors in Suzhou of Anhui Province during recent 50 years. [Method] According to annual snow cover days and correlated data in Suzhou during 1961-2010, by using linear trend method, accumulative anomaly and complete correlation coefficient method, etc., the climatic variation characteristics of snow cover days and its influence factors in Suzhou were analyzed. [Result] In recent 50 years, the snow cover period in Suzhou presented shortened trend. Except days of snow cover (≥20 cm), the annual snow cover days at each thickness all showed varying degrees of decrease trend. The annual snow cover days had wavy decline trend, and the decline amplitude was 0.84 d/10 a. From the 1960s to prior period of the 1970s, the annual snow cover days presented increase trend. From middle and later periods of the 1970s to middle period of the 1980s, the snow cover days was less and gradually increased from later period of the 1980s to the early 1990s. From middle period of the 1990s to 2003, it entered into less snow period again. From 2004 to now, it presented oscillation of snowy and less-snow alternating. The main climatic factor which affected annual snow cover days in Suzhou was average temperature. The second one was average surface temperature. [Conclusion] The research provided theoretical basis for analyzing climate variation in Suzhou under the background of global climate warming. 展开更多
关键词 snow cover days Climate change CHARACTERISTIC Influence factor SUZHOU China
下载PDF
Spatial distributions and interannual variations of snow cover over China in the last 40 years 被引量:8
4
作者 ChengHai Wang ZhiLan Wang Yang Cui 《Research in Cold and Arid Regions》 2009年第6期509-518,共10页
By using the observational snow data of more than 700 weather stations,the interannual temporal and spatial characteristics of seasonal snow cover in China were analyzed.The results show that northern Xinjiang,northea... By using the observational snow data of more than 700 weather stations,the interannual temporal and spatial characteristics of seasonal snow cover in China were analyzed.The results show that northern Xinjiang,northeastern China–Inner Mongolia,and the southwestern and southern portions of Tibetan Plateau are three regions in China with high seasonal snow cover and also an interannual anomaly of snow cover.According to the trend of both the snow depth and snow cover days,there are three changing patterns for the seasonal snow cover:The first type is that both snow depth and snow cover days simultaneously increase or decrease;this includes northern Xinjiang,middle and eastern Inner Mongolia,and so on.The second is that snow depth increases but snow cover days decrease;this type mainly locates in the eastern parts of the northeastern plain of China and the upper reaches of the Yangtze River.The last type is that snow depth decreases but snow cover days increase at the same time such as that in middle parts of Tibetan Plateau.Snow cover in China appears to have been having a slow increasing trend during the last 40 years.On the decadal scale,snow depth and snow cover days slightly increased in the 1960s and then decreased in the 1970s;they again turn to increasing in the 1980s and persist into 1990s. 展开更多
关键词 snow cover snow depth and snow cover days spatial-temporal characters interannual and decadal variation
下载PDF
Monitoring and analysis of snow cover change in an alpine mountainous area in the Tianshan Mountains,China
5
作者 ZHANG Yin GULIMIRE Hanati +1 位作者 SULITAN Danierhan HU Keke 《Journal of Arid Land》 SCIE CSCD 2022年第9期962-977,共16页
Estimating the snow cover change in alpine mountainous areas(in which meteorological stations are typically lacking)is crucial for managing local water resources and constitutes the first step in evaluating the contri... Estimating the snow cover change in alpine mountainous areas(in which meteorological stations are typically lacking)is crucial for managing local water resources and constitutes the first step in evaluating the contribution of snowmelt to runoff and the water cycle.In this paper,taking the Jingou River Basin on the northern slope of the Tianshan Mountains,China as an example,we combined a new moderate-resolution imaging spectroradiometer(MODIS)snow cover extent product over China spanning from 2000 to 2020 with digital elevation model(DEM)data to study the change in snow cover and the hydrological response of runoff to snow cover change in the Jingou River Basin under the background of climate change through trend analysis,sensitivity analysis and other methods.The results indicate that from 2000 to 2020,the annual average temperature and annual precipitation in the study area increased and snow cover fraction(SCF)showed obvious signs of periodicity.Furthermore,there were significant regional differences in the spatial distribution of snow cover days(SCDs),which were numerous in the south of the basin and sparse in the central of the basin.Factors affecting the change in snow cover mainly included temperature,precipitation,elevation,slope and aspect.Compared to precipitation,temperature had a greater impact on SCF.The annual variation in SCF was limited above the elevation of 4200 m,but it fluctuated greatly below the elevation of 4200 m.These results can be used to establish prediction models of snowmelt and runoff for alpine mountainous areas with limited hydrological data,which can provide a scientific basis for the management and protection of water resources in alpine mountainous areas. 展开更多
关键词 snow cover fraction snow cover days snowmelt runoff sensitivity analysis climate change Jingou River Basin Tianshan Mountains
下载PDF
An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing 被引量:5
6
作者 Yi ZHOU Bing GUO +1 位作者 ShiXin WANG HePing TAO 《Journal of Arid Land》 SCIE CSCD 2015年第3期304-317,共14页
Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been c... Studies of wind erosion based on Geographic Information System(GIS) and Remote Sensing(RS) have not attracted sufficient attention because they are limited by natural and scientific factors.Few studies have been conducted to estimate the intensity of large-scale wind erosion in Inner Mongolia,China.In the present study,a new model based on five factors including the number of snow cover days,soil erodibility,aridity,vegetation index and wind field intensity was developed to quantitatively estimate the amount of wind erosion.The results showed that wind erosion widely existed in Inner Mongolia.It covers an area of approximately 90×104 km2,accounting for 80% of the study region.During 1985–2011,wind erosion has aggravated over the entire region of Inner Mongolia,which was indicated by enlarged zones of erosion at severe,intensive and mild levels.In Inner Mongolia,a distinct spatial differentiation of wind erosion intensity was noted.The distribution of change intensity exhibited a downward trend that decreased from severe increase in the southwest to mild decrease in the northeast of the region.Zones occupied by barren land or sparse vegetation showed the most severe erosion,followed by land occupied by open shrubbery.Grasslands would have the most dramatic potential for changes in the future because these areas showed the largest fluctuation range of change intensity.In addition,a significantly negative relation was noted between change intensity and land slope.The relation between soil type and change intensity differed with the content of Ca CO3 and the surface composition of sandy,loamy and clayey soils with particle sizes of 0–1 cm.The results have certain significance for understanding the mechanism and change process of wind erosion that has occurred during the study period.Therefore,the present study can provide a scientific basis for the prevention and treatment of wind erosion in Inner Mongolia. 展开更多
关键词 wind erosion estimation model soil erodibility snow cover days aridity Inner Mongolia
下载PDF
中国干旱区积雪面积产品去云处理方法验证与评估 被引量:13
7
作者 王增艳 车涛 《干旱区研究》 CSCD 北大核心 2012年第2期312-319,共8页
针对MODIS每日积雪产品中云覆盖现象严重这一问题,以中国干旱区作为研究对象,结合AMSR-E被动微波雪深数据,采用多时相、多传感器数据融合的方法进行去云处理,获取MODIS每日,4 d,8 d和MODIS与AM-SR-E融合后的每日,4 d与8 d共6种新的积雪... 针对MODIS每日积雪产品中云覆盖现象严重这一问题,以中国干旱区作为研究对象,结合AMSR-E被动微波雪深数据,采用多时相、多传感器数据融合的方法进行去云处理,获取MODIS每日,4 d,8 d和MODIS与AM-SR-E融合后的每日,4 d与8 d共6种新的积雪产品,并分别提取其积雪持续日数(SCD)。对比结果显示,MODIS与AMSR-E多传感器的阈值法4日融合产品在融合算法效率、云去除效果和融合后保持较高分类精度方面均有较好表现,其融合后的无云产品在全天气条件下具有96%的整体分类精度、80%的雪分类精度和99%的陆地分类精度,大大高于研究区原MODIS Terra-Aqua每日融合积雪产品全天候条件下64%,32%和70%的整体、雪、陆分类精度;并且由其提取的积雪持续日数不仅在最大程度上保持了原MODIS产品高的空间分辨率,而且精度较高,对研究区积雪的空间分布状况有很好反映。 展开更多
关键词 积雪面积 产品 持续日数(scd) MODIS 空间分辨率 去云处理 干旱区 中国
原文传递
中国东北地区时间序列雪盖监测数据集
8
作者 陈圣波 杨倩 +2 位作者 XIE Hongjie 周超 路鹏 《地理学报》 EI CSCD 北大核心 2014年第S01期I0077-I0082,178-184,共13页
东北地区是中国三大稳定积雪区,区域尺度的雪盖时空变化监测对水资源的有效利用和雪灾监测和预警具有重要意义。本数据集在2004-2013年美国地球观测卫星TERRA/AQUA-MODIS数据基础上经算法改进,自定义生产MODIS Terra/Aqua双星逐日融合数... 东北地区是中国三大稳定积雪区,区域尺度的雪盖时空变化监测对水资源的有效利用和雪灾监测和预警具有重要意义。本数据集在2004-2013年美国地球观测卫星TERRA/AQUA-MODIS数据基础上经算法改进,自定义生产MODIS Terra/Aqua双星逐日融合数据(MODISDC)和滑动多日融合数据(MODISMC)两种基础数据,并且反演积雪天数(Snow Cover Day,SCD)、积雪初日(Snow Onset Date,SCOD)和融雪终日(Snow Melting Date,SCMD)三类专题数据。利用气象站台实测逐日积雪深度数据,考虑云覆盖的影响,对MODIS双星逐日合成产品和滑动多日合成进行检验,总体精度分别为47.51%和76.52%,明显高于MODIS原始数据MOD10A1(34.45%)和MYD10A1(30.57%)。 展开更多
关键词 中国东北 雪盖数据 积雪天数 积雪初日 积雪终日
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部