期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A primary-secondary background model with sliding window PCA algorithm
1
作者 Hailong ZHU Peng LIU +1 位作者 Jiafeng LIU Xianglong TANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2011年第4期528-534,共7页
Rain and snow seriously degrade outdoor video quality.In this work,a primary-secondary background model for removal of rain and snow is built.First,we analyze video noise and use a sliding window sequence principal co... Rain and snow seriously degrade outdoor video quality.In this work,a primary-secondary background model for removal of rain and snow is built.First,we analyze video noise and use a sliding window sequence principal component analysis de-nosing algorithm to reduce white noise in the video.Next,we apply the Gaussian mixture model(GMM)to model the video and segment all foreground objects primarily.After that,we calculate von Mises distribution of the velocity vectors and ratio of the overlapped region with referring to the result of the primary segmentation and extract the interesting object.Finally,rain and snow streaks are inpainted using the background to improve the quality of the video data.Experiments show that the proposed method can effectively suppress noise and extract interesting targets. 展开更多
关键词 sliding window sequence principal component analysis primary-secondary background model removal of rain and snow Gaussian mixture model(GMM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部