Poly(styrene-co-glycidyl methacrylate) latex microspheres with uniform size and high-density epoxy groups on the surface were prepared by soap-free emulsion polymerization with batch wise operation mode in the presenc...Poly(styrene-co-glycidyl methacrylate) latex microspheres with uniform size and high-density epoxy groups on the surface were prepared by soap-free emulsion polymerization with batch wise operation mode in the presence of 2.2′- azobis(2-methylpropionamidine) dihydrochloride as an initiator.The kinetics of soap-free emulsion polymerization and the effects of polymerization factors were examined.In addition,the optimum polymerization conditions of poly(styrene-co- glycidyl methacrylate) latex microspheres for...展开更多
Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free em...Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted. Moreover, the influence of mole ratio of BA to MAA, pH value on the oligomer was studied. And the effects of the added amount of oligomer, self-crosslinked monomer and HFBA, mass ratio of BA to MMA, reaction temperature and the initiator on the polymerization technology and the performance of the product, were investigated and optimized. The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR, TEM, MFT and contact angle and water absorption of the latex film. The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows: for preparing the oligomer, tool ratio of BA to MAA is equal to 1.0 : 1.60, and pH value is controlled within the range of 8.0 and 9.0; for preparing fluorocarbon polymer emulsion, the added amount of oligmer[P(BA/MANa)] is 6%; mass ratio of BA to MMA is 40 " 60; the added amount of self-crosslinked monomer is 2%, the added amount of HFBA is 15 %; reaction temperature is 80 ℃; the mixture of potassium persulfate and sodium bisulfite is used as the initiator. The film-forming stability of the fluorocarbon polymer emul- sion and the performance of the latex film, which is prepared with the soap-free emulsion polymerization, are better than that prepared with the conventional emulsion polymerization.展开更多
Monodisperse functional polymer microspheres with different particle size and with clean surface were prepared by batch soap-free emulsion polymerization of styrene, methyl methacrylate and acrylic acid in the presenc...Monodisperse functional polymer microspheres with different particle size and with clean surface were prepared by batch soap-free emulsion polymerization of styrene, methyl methacrylate and acrylic acid in the presence of salts, and the influences of type and amount of electrolytes on polymerization process and particle morphology were investigated. Results showed that there was a critical concentration for different electrolyte to make polymerization process and the resultant emulsion stable, and the particle size increased with the increase of electrolyte concentration. The effect of metal ions was Ca^2+〉〉K^+〉Na^+〉Li^+, and the effect of haloids was Br〉Cl〉F. Keywords: Electrolyte, soap-free emulsion polymerization, polystyrene, latex particle morphology.展开更多
Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwi...Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwise alkali/acid treatment method. Effects of acid treatment conditions on the particle morphology were investigated. Results show that one to three pores were formed inside most of particles after post-treatment. At pH 7.0, when the treatment temperature was lower than 70℃, the size of particles and the volume of pores remained almost unchanged, and these two values increased significantly when the temperature was higher than 70℃. Both the particle size and the pore volume decreased with the increase of initial pH value and treatment time in the acid treatment. As the pH was below 4.0 and the treatment time was longer than 180 min, the particles shrunk in size.展开更多
In this study, the emulsion homopolymerization system containing vinyl acetate, potassium persulfate, a new cationic polymeric surfactant and water was studied by the applying semi-continuous emulsion polymerization p...In this study, the emulsion homopolymerization system containing vinyl acetate, potassium persulfate, a new cationic polymeric surfactant and water was studied by the applying semi-continuous emulsion polymerization process. The effects of new polymeric emulsifier on the physicochemical properties of obtained vinyl acetate latexes were investigated depending on vinyl acetate percentage in the polymerization recipe, and two thermal initiators in homopolymerization.展开更多
A poly(ethylene glycol) (PEG) based macroinitiator (MI) with terminal chloride atom at both ends was prepared by the reaction of PEG-400 with chloroacetyl chloride and used for the cationic polymerization of dodecyl v...A poly(ethylene glycol) (PEG) based macroinitiator (MI) with terminal chloride atom at both ends was prepared by the reaction of PEG-400 with chloroacetyl chloride and used for the cationic polymerization of dodecyl vinyl ether (DVE) yielding ABA type block copolymer. The block copolymer was then used as the surfactant for the emulsion polymerization of vinyl acetate and styrene in the presence of potassium persulfate as an initiator. The effects of new polymeric emulsifier on the physicochemical properties of obtained latexes were investigated depending on surfactant percentage in homopolymerizations.展开更多
Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene (PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed p...Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene (PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed particles. The obtained peanut- shaped particles showed a novel internal morphology: PS phase formed one domain which linked to the other domain having PMMA core encased by PS shell.展开更多
Micron-sized nonspherical polymer particles having different morphologies were synthesized by seeded soap-free emulsion polymerization of styrene (St) and ethyleneglycol dimethacrylate (EGDMA, used as a crosslinker...Micron-sized nonspherical polymer particles having different morphologies were synthesized by seeded soap-free emulsion polymerization of styrene (St) and ethyleneglycol dimethacrylate (EGDMA, used as a crosslinker) on spherical, linear polystyrene (PS) seed particles. The morphology of the resulting PS/poly(St-co-EGDMA) particles was dependent on the crosslinker concentration and polymerization temperature.展开更多
Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside t...Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside the particles were generated by alkali posttreatment in the presence of 2-butanone. Results indicated that the size of void and the particle volume were related with the amount of 2-butanone. The generation mechanism of voids was proposed.展开更多
In this work,polystyrene-based oil-in-water Pickering emulsion stabilized by nanocrystalline cellulose(NCC)was formulated.The NCC was prepared by sulfuric-acid-catalyzed hydrolysis of microcrystalline cellulose,with a...In this work,polystyrene-based oil-in-water Pickering emulsion stabilized by nanocrystalline cellulose(NCC)was formulated.The NCC was prepared by sulfuric-acid-catalyzed hydrolysis of microcrystalline cellulose,with a yield of 60%and an average particle size of about 152.9 nm.When the content of NCC was 5 g/L,the surface tension was 54.58 mN/m,and stable styrene-based Pickering emulsion was prepared using NCC as the stabilizer.The presence of NCC particles in the emulsion system resulted in high resistance against creaming.Due to improved stability,the conversion efficiency of styrene was higher in the polymerization process of the styrene-based Pickering emulsion.展开更多
基金supported by the State Key Laboratory of Chemical Engineering of Zhejiang Universitythe financial support from the National Natural Science Foundation of China (No.20676113).
文摘Poly(styrene-co-glycidyl methacrylate) latex microspheres with uniform size and high-density epoxy groups on the surface were prepared by soap-free emulsion polymerization with batch wise operation mode in the presence of 2.2′- azobis(2-methylpropionamidine) dihydrochloride as an initiator.The kinetics of soap-free emulsion polymerization and the effects of polymerization factors were examined.In addition,the optimum polymerization conditions of poly(styrene-co- glycidyl methacrylate) latex microspheres for...
基金Funded by the Jiangsu Provincial Creative Fund for Scientific and Tech-nical Small and Medium-size Enterprise
文摘Using methyl methacrylate (MMA), butyl acrylate(BA) and hexafluorobutyl acrylate(HFBA) as main raw materials, we prepared self-crosslinked fluorocarbon polymer emulsion with core-shell structure via soap-free emulsion polymerization when the conception of particle design and polymer morphology was adopted. Moreover, the influence of mole ratio of BA to MAA, pH value on the oligomer was studied. And the effects of the added amount of oligomer, self-crosslinked monomer and HFBA, mass ratio of BA to MMA, reaction temperature and the initiator on the polymerization technology and the performance of the product, were investigated and optimized. The structure and performance of the fluorocarbon polymer emulsion were characterized and tested with FTIR, TEM, MFT and contact angle and water absorption of the latex film. The experimental results show that the optimal conditions for preparing fluorocarbon polymer emulsion are as follows: for preparing the oligomer, tool ratio of BA to MAA is equal to 1.0 : 1.60, and pH value is controlled within the range of 8.0 and 9.0; for preparing fluorocarbon polymer emulsion, the added amount of oligmer[P(BA/MANa)] is 6%; mass ratio of BA to MMA is 40 " 60; the added amount of self-crosslinked monomer is 2%, the added amount of HFBA is 15 %; reaction temperature is 80 ℃; the mixture of potassium persulfate and sodium bisulfite is used as the initiator. The film-forming stability of the fluorocarbon polymer emul- sion and the performance of the latex film, which is prepared with the soap-free emulsion polymerization, are better than that prepared with the conventional emulsion polymerization.
文摘Monodisperse functional polymer microspheres with different particle size and with clean surface were prepared by batch soap-free emulsion polymerization of styrene, methyl methacrylate and acrylic acid in the presence of salts, and the influences of type and amount of electrolytes on polymerization process and particle morphology were investigated. Results showed that there was a critical concentration for different electrolyte to make polymerization process and the resultant emulsion stable, and the particle size increased with the increase of electrolyte concentration. The effect of metal ions was Ca^2+〉〉K^+〉Na^+〉Li^+, and the effect of haloids was Br〉Cl〉F. Keywords: Electrolyte, soap-free emulsion polymerization, polystyrene, latex particle morphology.
基金The research was supported by the National 863 Project of China(No.2001AA242041).
文摘Soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles with narrow size distribution were synthesized by seeded emulsion polymerization, and the porous particles were created by a stepwise alkali/acid treatment method. Effects of acid treatment conditions on the particle morphology were investigated. Results show that one to three pores were formed inside most of particles after post-treatment. At pH 7.0, when the treatment temperature was lower than 70℃, the size of particles and the volume of pores remained almost unchanged, and these two values increased significantly when the temperature was higher than 70℃. Both the particle size and the pore volume decreased with the increase of initial pH value and treatment time in the acid treatment. As the pH was below 4.0 and the treatment time was longer than 180 min, the particles shrunk in size.
文摘In this study, the emulsion homopolymerization system containing vinyl acetate, potassium persulfate, a new cationic polymeric surfactant and water was studied by the applying semi-continuous emulsion polymerization process. The effects of new polymeric emulsifier on the physicochemical properties of obtained vinyl acetate latexes were investigated depending on vinyl acetate percentage in the polymerization recipe, and two thermal initiators in homopolymerization.
基金This work were supported by the Turkish Scientific and Technological Research Council(TUBITAK)(Project Number:108T722)Scientific Research Projects Coordination Center of Yildiz Technical University(Project Number:2012-01-02-KAP04).
文摘A poly(ethylene glycol) (PEG) based macroinitiator (MI) with terminal chloride atom at both ends was prepared by the reaction of PEG-400 with chloroacetyl chloride and used for the cationic polymerization of dodecyl vinyl ether (DVE) yielding ABA type block copolymer. The block copolymer was then used as the surfactant for the emulsion polymerization of vinyl acetate and styrene in the presence of potassium persulfate as an initiator. The effects of new polymeric emulsifier on the physicochemical properties of obtained latexes were investigated depending on surfactant percentage in homopolymerizations.
基金supported by National Natural Science Foundation of China(No.50943028)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene (PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed particles. The obtained peanut- shaped particles showed a novel internal morphology: PS phase formed one domain which linked to the other domain having PMMA core encased by PS shell.
基金partially supported by the National Natural Science Foundation of China(No.50943028)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Micron-sized nonspherical polymer particles having different morphologies were synthesized by seeded soap-free emulsion polymerization of styrene (St) and ethyleneglycol dimethacrylate (EGDMA, used as a crosslinker) on spherical, linear polystyrene (PS) seed particles. The morphology of the resulting PS/poly(St-co-EGDMA) particles was dependent on the crosslinker concentration and polymerization temperature.
基金the National 863 Project of China(grant No.2001AA242041)for financial support
文摘Soap-free P(MMA-EA-MAA) particles with narrow size distribution were synthesized by seeded emulsion polymerization of methyl methacrylate (MMA), ethyl acrylate (EA) and methacrylic acid (MAA), and large voids inside the particles were generated by alkali posttreatment in the presence of 2-butanone. Results indicated that the size of void and the particle volume were related with the amount of 2-butanone. The generation mechanism of voids was proposed.
基金Shandong Provincial Natural Science Foundation of China(Grant No.ZR2017MC032)Open Fund of State Key Laboratory Base of Eco-Chemical Engineering(Grant No.KF1706)Undergraduate Training Programs for Innovation and Entrepreneurship at Qingdao University of Science&Technology(201601010).
文摘In this work,polystyrene-based oil-in-water Pickering emulsion stabilized by nanocrystalline cellulose(NCC)was formulated.The NCC was prepared by sulfuric-acid-catalyzed hydrolysis of microcrystalline cellulose,with a yield of 60%and an average particle size of about 152.9 nm.When the content of NCC was 5 g/L,the surface tension was 54.58 mN/m,and stable styrene-based Pickering emulsion was prepared using NCC as the stabilizer.The presence of NCC particles in the emulsion system resulted in high resistance against creaming.Due to improved stability,the conversion efficiency of styrene was higher in the polymerization process of the styrene-based Pickering emulsion.