In Web 2.0 era,the content on a web page is increasingly generated by end users,rather than limited number of administrators.Hence,large number of User Generated Content(UGC) has driven the explosion of content in the...In Web 2.0 era,the content on a web page is increasingly generated by end users,rather than limited number of administrators.Hence,large number of User Generated Content(UGC) has driven the explosion of content in the web.Thanks to UGC,the pattern of web usage has evolved from download dominated way to a hybrid one with both information download and upload.Large number of UGC has unveiled great capacity of information that is unavailable for researchers before,such as individual preferences,social connections,and etc.In this paper,we propose a novel model which studies the UGC in micro-blogging web sites,the largest and fastest information diffusion media online,and evaluate the social influence for an arbitrary individual.Experimental results show that our model outperforms state-of-the-art techniques in social influence evaluation in both the running time and accuracy.展开更多
With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel o...With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel out of town. However, because users only check-in interaction is highly sparse, which creates a big challenge for POI recommendation. To tackle this challenge, we propose a joint probabilistic generative model called geographical temporal social content popularity(GTSCP) to imitate user check-in activities in a process of decision making, which effectively integrates the geographical influence, temporal effect, social correlation, content information and popularity impact factors to overcome the data sparsity, especially for out-of-town users. Our proposed the GTSCP supports two recommendation scenarios in a joint model, i.e., home-town recommendation and out-of-town recommendation. Experimental results show that GTSCP achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.展开更多
基金ACKNOWLEDGEMENT This work was partially supported by the National Natural Science Foundation of China under Grants No. 61202179, No. 61173089 SRF for ROCS, SEM and the Fundamental Research Funds for the Central Universities.
文摘In Web 2.0 era,the content on a web page is increasingly generated by end users,rather than limited number of administrators.Hence,large number of User Generated Content(UGC) has driven the explosion of content in the web.Thanks to UGC,the pattern of web usage has evolved from download dominated way to a hybrid one with both information download and upload.Large number of UGC has unveiled great capacity of information that is unavailable for researchers before,such as individual preferences,social connections,and etc.In this paper,we propose a novel model which studies the UGC in micro-blogging web sites,the largest and fastest information diffusion media online,and evaluate the social influence for an arbitrary individual.Experimental results show that our model outperforms state-of-the-art techniques in social influence evaluation in both the running time and accuracy.
基金supported by the National Key Project of Scientific and Technical Supporting Programs of China(2014BAK15B01)
文摘With the rapid development of location-based networks, point-of-interest(POI) recommendation has become an important means to help people discover interesting and attractive locations, especially when users travel out of town. However, because users only check-in interaction is highly sparse, which creates a big challenge for POI recommendation. To tackle this challenge, we propose a joint probabilistic generative model called geographical temporal social content popularity(GTSCP) to imitate user check-in activities in a process of decision making, which effectively integrates the geographical influence, temporal effect, social correlation, content information and popularity impact factors to overcome the data sparsity, especially for out-of-town users. Our proposed the GTSCP supports two recommendation scenarios in a joint model, i.e., home-town recommendation and out-of-town recommendation. Experimental results show that GTSCP achieves significantly superior recommendation quality compared to other state-of-the-art POI recommendation techniques.