An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the ped...An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source.展开更多
The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation mo...The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time.展开更多
An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant...An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.展开更多
In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flock...In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flocking behavior,such as segregation,alignment and cohesion,and proposes a method for crowd motion simulation based on the Boids model and social force model.Firstly,the perception area of individuals is divided into zone of segregation,alignment and cohesion.Secondly,the interactive force among individuals is calculated based upon the zone information,velocity vector and the group information.The interactive force among individuals is the synthesis of three forces:the repulsion force to avoid collisions,the alignment force to keep consistent with the velocity direction,and the attractive force to get close to the members of group.In segregation and alignment areas,the repulsion force and alignment force among pedestrians are limited by visual field factors.Finally,the interactive force among individuals,the driving force of destination and the repulsion force of obstacles work together to drive the behavior of crowd motion.The simulation results show that the proposed method can not only effectively simulate the interactive behavior between adjacent individuals but also the collective behavior of group.展开更多
Crowd evacuation simulation using virtual reality(VR)is significant for digital emergency response construction.However,existing evacuation simulation studies suffer from poor adaptation to complex environments,ineffi...Crowd evacuation simulation using virtual reality(VR)is significant for digital emergency response construction.However,existing evacuation simulation studies suffer from poor adaptation to complex environments,inefficient evacuations,and poor simulation effects and do not fully consider the impacts of specific disaster environments on crowd evacuation.To more realistically express the crowd evacuation results obtained under the influence offire environments and the subjective consciousness of pedestrians in subway stations,we designed a dynamic pedestrian evacuation path planning method under multiple constraints,analysed the influences of an‘environmental role’and a‘subjective initiative’on crowd evacuation,established an improved social force model(ISFM)-based crowd evacuation simulation method in VR,developed a prototype system and conducted experimental analyses.The experimental results show that the crowd evacuation time of the ISFM is affected by the disaster severity.In simulation experiments without disaster scenarios,the improved model’s crowd evacuation efficiency improved by averages of 12.53%and 15.37%over the commercial Pathfinder software and the original social force model,respectively.The method described herein can effectively support real-time VR crowd evacuation simulation under multiexit and multifloor conditions and can provide technical support for emergency evacuation learning and management decision analyses involving subwayfires.展开更多
基金Project supported by National Key Research and Development Program of China(Grant Nos.2022YFC3320800 and 2021YFC1523500)the National Natural Science Foundation of China(Grant Nos.71971126,71673163,72304165,72204136,and 72104123).
文摘An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51874183 and 51874182)the National Key Research and Development Program of China (Grant No. 2018YFC0809300)。
文摘The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time.
基金Project(T14JB00200)supported by the Fundamental Research Funds for the Central UniversitiesChina+2 种基金Projects(RCS2012ZZ002RCS2012ZT003)supported by the State Key Laboratory of Rail Traffic Control and SafetyChina
文摘An improved social force model based on exit selection is proposed to simulate pedestrians' microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.
文摘In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flocking behavior,such as segregation,alignment and cohesion,and proposes a method for crowd motion simulation based on the Boids model and social force model.Firstly,the perception area of individuals is divided into zone of segregation,alignment and cohesion.Secondly,the interactive force among individuals is calculated based upon the zone information,velocity vector and the group information.The interactive force among individuals is the synthesis of three forces:the repulsion force to avoid collisions,the alignment force to keep consistent with the velocity direction,and the attractive force to get close to the members of group.In segregation and alignment areas,the repulsion force and alignment force among pedestrians are limited by visual field factors.Finally,the interactive force among individuals,the driving force of destination and the repulsion force of obstacles work together to drive the behavior of crowd motion.The simulation results show that the proposed method can not only effectively simulate the interactive behavior between adjacent individuals but also the collective behavior of group.
基金supported by the National Natural Science Foundation of China[grant no 42271424,42171397]Sichuan Transportation Science and Technology Program[grant no 2021-B-02]Chengdu Science and Technology Program[grant no 2021XT00001GX].
文摘Crowd evacuation simulation using virtual reality(VR)is significant for digital emergency response construction.However,existing evacuation simulation studies suffer from poor adaptation to complex environments,inefficient evacuations,and poor simulation effects and do not fully consider the impacts of specific disaster environments on crowd evacuation.To more realistically express the crowd evacuation results obtained under the influence offire environments and the subjective consciousness of pedestrians in subway stations,we designed a dynamic pedestrian evacuation path planning method under multiple constraints,analysed the influences of an‘environmental role’and a‘subjective initiative’on crowd evacuation,established an improved social force model(ISFM)-based crowd evacuation simulation method in VR,developed a prototype system and conducted experimental analyses.The experimental results show that the crowd evacuation time of the ISFM is affected by the disaster severity.In simulation experiments without disaster scenarios,the improved model’s crowd evacuation efficiency improved by averages of 12.53%and 15.37%over the commercial Pathfinder software and the original social force model,respectively.The method described herein can effectively support real-time VR crowd evacuation simulation under multiexit and multifloor conditions and can provide technical support for emergency evacuation learning and management decision analyses involving subwayfires.