This paper aims to introduce the novel concept of neutrosophic crisp soft set(NCSS),including various types of neutrosophic crisp soft sets(NCSSs)and their fundamental operations.We define NCS-mapping and its inverse ...This paper aims to introduce the novel concept of neutrosophic crisp soft set(NCSS),including various types of neutrosophic crisp soft sets(NCSSs)and their fundamental operations.We define NCS-mapping and its inverse NCS-mapping between two NCS-classes.We develop a robust mathematical modeling with the help of NCS-mapping to analyze the emerging trends in social networking systems(SNSs)for our various generations.We investigate the advantages,disadvantages,and natural aspects of SNSs for five generations.With the changing of the generations,it is analyzed that emerging trends and the benefits of SNSs are increasing day by day.The suggested modeling with NCS-mapping is applicable in solving various decision-making problems.展开更多
Background:During the early stages of the COVID-19 pandemic in China,social interactions shifted to online spaces due to lockdowns and social distancing measures.As a result,the impact of online social networking on u...Background:During the early stages of the COVID-19 pandemic in China,social interactions shifted to online spaces due to lockdowns and social distancing measures.As a result,the impact of online social networking on users’emotional status has become stronger than ever.This study examines the association between online social networking and Internet users’emotional status and how offline reality affects this relationship.Methods:The study utilizes cross-sectional online survey data(n=3004)and Baidu Migration big data from the first 3 months of the pandemic.Two dimensions of online networking are measured:social support and information sources.Results:First,individuals’online social support(β=0.16,p<0.05)and information sources(β=0.08,p<0.01)are both positively associated to their emotional status during the epidemic.Second,these positive associations are moderated by social status and provincial pandemic control interventions.With regards to the moderation effect of social status,the constructive impact of information sources on emotional well-being is more pronounced among individuals from vulnerable groups compared to those who are not.With regard to the moderation effect of provincial interventions,online social support has the potential to alleviate the adverse repercussions of high rates of confirmed COVID-19 cases and strict lockdown measures while simultaneously augmenting the favorable effects of recovery.Conclusion:The various dimensions of social networking exert distinct effects on emotional status through diverse mechanisms,all of which must be taken into account when designing and adapting pandemic-control interventions.展开更多
With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the us...With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the users and inject massive malicious activities that pose a crucial security threat to the original user.However,the attackers also target this height of OSN utilization,explicitly creating the clones of the user’s account.Various clone detection mechanisms are designed based on social-network activities.For instance,monitoring the occur-rence of clone edges is done to restrict the generation of clone activities.However,this assumption is unsuitable for a real-time environment and works optimally during the simulation process.This research concentrates on modeling and effi-cient clone prediction and avoidance methods to help the social network activists and the victims enhance the clone prediction accuracy.This model does not rely on assumptions.Here,an ensemble Adaptive Random Subspace is used for clas-sifying the clone victims with k-Nearest Neighbour(k-NN)as a base classifier.The weighted clone nodes are analysed using the weighted graph theory concept based on the classified results.When the weighted node’s threshold value is high-er,the trust establishment is terminated,and the clones are ranked and sorted in the higher place for termination.Thus,the victims are alert to the clone propaga-tion over the online social networking end,and the validation is done using the MATLAB 2020a simulation environment.The model shows a better trade-off than existing approaches like Random Forest(RF),Naïve Bayes(NB),and the standard graph model.Various performance metrics like True Positive Rate(TPR),False Alarm Rate(FAR),Recall,Precision,F-measure,and ROC and run time analysis are evaluated to show the significance of the model.展开更多
Although today’s users of mobile phones are afforded increasing control as the popularity and richness of information provided by smartphones increases, how these users make choices and evaluations cannot be explicit...Although today’s users of mobile phones are afforded increasing control as the popularity and richness of information provided by smartphones increases, how these users make choices and evaluations cannot be explicitly expressed. This study uses an acute observation of designers of technology and aesthetics to conduct a mental-model analysis of smartphones with the purpose of explicitly identifying the differences in the schemas of users. This study also modifies the mental model to evaluate the practicability of the mental model. Hence, this study investigates groups of subjects, comparing freshmen and graduating students froma college of design, and adopts a schematized data collection and analysis approach, Interactive Qualitative Analysis (IQA), to ascertain the relationships between factors and establish a complete user mental model. The study results present 11 primary affinity factors: “Pricing,” “Advertisement,” “User Interface,” “Innovation Functions,” “System Maintenance,” “Privacy,” “Utility Functions,” “Personalization,” “Network Performance,” “Customer Service,” and “Multimedia Contents.” The primary driver in evaluating smartphones is found to be “Pricing” for graduating students and “Privacy” for freshmen. The two groups share the same final effect factor, “Multimedia Contents.” This study has successfully identified differences between the different mental models of the two groups, supporting the method that using IQA to perform a quality evaluation of social networking for smartphones is effective. Consequently, platform developers can understand user demand through a mental model and can design good platform functions to effectively improve users’ experience of smartphones.展开更多
This study examines why some social networking sites (SNSs) stagnate while other SNSs grow by comparing Cyworld with Facebook. Cyworld was one of the most successful SNSs in the world, but its international expansio...This study examines why some social networking sites (SNSs) stagnate while other SNSs grow by comparing Cyworld with Facebook. Cyworld was one of the most successful SNSs in the world, but its international expansion efforts failed. Facebook's open technology has had considerable influence on various sectors of the economy and society and allowed it to become a dominant SNS at the global level, whereas Cyworld has remained a local SNS. Facebook's open platform and application programming interface (API) pose a serious challenge to Cyworld's walled-garden approach. Cyworld is based on strong ties fostering close relationships, whereas Facebook expands social networks through its open and weak ties and has more network power than Cyworld. Therefore, openness is the main reason behind the rise of Facebook and the fall of Cyworld.展开更多
Internet based social-networking sites like Facebook are highly attractive, user-friendly, and increasingly popular. Current estimates indicate over 750 million users of Facebook alone. However, Internet addiction is ...Internet based social-networking sites like Facebook are highly attractive, user-friendly, and increasingly popular. Current estimates indicate over 750 million users of Facebook alone. However, Internet addiction is an increasing problem amongst today's youth and as yet, is understudied in the United States. This study looked at the relationship between this new social-networking tool and the increasing phenomenon of internet addiction symptoms using both a US college sample (age 19years) and a US high-school sample (age 14years). Findings indicate that SNS (Social Networking Site) activity maybe more predictive of addictive behaviors than general internet use and that higher percents of symptomology occur in those users reporting SNS activity as their primary internet activity.展开更多
Purpose: In the Web 2.0 era,leveraging the collective power of user knowledge contributions has become an important part of the study of collective intelligence. This research aims to investigate the factors which inf...Purpose: In the Web 2.0 era,leveraging the collective power of user knowledge contributions has become an important part of the study of collective intelligence. This research aims to investigate the factors which influence knowledge contribution behavior of social networking sites(SNS) users.Design/methodology/approach: The data were obtained from an online survey of 251 social networking sites users. Structural equation modeling analysis was used to validate the proposed model.Findings: Our survey shows that the individuals' motivation for knowledge contribution,their capability of contributing knowledge,interpersonal trust and their own habits positively influence their knowledge contribution behavior,but reward does not significantly influence knowledge contribution in the online virtual community.Research limitations: Respondents of our online survey are mainly undergraduate and graduate students. A limited sample group cannot represent all of the population. A larger survey involving more SNS users may be useful.Practical implications: The results have provided some theoretical basis for promoting knowledge contribution and user viscosity.Originality/value: Few studies have investigated the impact of social influence and user habits on knowledge contribution behavior of SNS users. This study can make a theoretical contribution by examining how the social influence processes and habits affect one's knowledge contribution behavior using online communities.展开更多
Purpose:This study was conducted to investigate the current situation of privacy disclosure(in the Chinese social networking sites.Design/methodology/approach:Data analysis was based on profiles of 240 college student...Purpose:This study was conducted to investigate the current situation of privacy disclosure(in the Chinese social networking sites.Design/methodology/approach:Data analysis was based on profiles of 240 college students on Renren.com,a popular college-oriented social networking site in China.Users’ privacy disclosure behaviors were studied and gender difference was analyzed particularly.Correlation analysis was conducted to examine the relationships among evaluation indicators involving user name,image,page visibility,message board visibility,completeness of education information and provision of personal information.Findings:A large amount of personal information was disclosed via social networking sites in China.Greater percentage of male users than female users disclosed their personal information.Furthermore,significantly positive relationships were found among page visibility,message board visibility,completeness of education information and provision of personal information.Research limitations:Subjects were collected from only one social networking website.Meanwhile,our survey involves subjective judgments of user name reliability,category of profile images and completeness of information.Practical implications:This study will be of benefit for college administrators,teachers and librarians to design courses for college students on how to use social networking sites safely.Originality /value:This empirical study is one of the first studies to reveal the current situation of privacy disclosure in the Chinese social networking sites and will help the research community gain a deeper understanding of privacy disclosure in the Chinese social networking sites.展开更多
A number of mobile Online Social Networking (OSN) services have appeared in the market in recent times. While most mobile systems benefit greatly from cloud services, centralized servers and communications infrastru...A number of mobile Online Social Networking (OSN) services have appeared in the market in recent times. While most mobile systems benefit greatly from cloud services, centralized servers and communications infrastructure is not always available. Nor are location-based services offered to mobile devices without GPS. To take advantage of cloud and to address these problems, a Wi-Fi based multihop networking system called MoNet is proposed. On top of MONET we propose a privacy-aware geosocial networking service called WiFace. Where there is no infrastructure, a distributed content sharing protocol significantly shortens the relay path, reduces conflicts, and improves data availability. Furthermore, a security mechanism is developed to protect privacy. Comprehensive experiments performed on MoNet show that the system is more than sufficient to support social networking and even audio and video applications.展开更多
The study, throughout the usage of Emirati youth for the social networking sites and satisfactions achieved, illustrated that the nature of those networks is considered a rapidly developing method of communication, wh...The study, throughout the usage of Emirati youth for the social networking sites and satisfactions achieved, illustrated that the nature of those networks is considered a rapidly developing method of communication, which is accompanied by attempts to impose a number of short abbreviated vocabulary to be used among the youth. Since social networking sites represent one of the most significant tremendous development aspects of information technology, which reached its peak during the last decade, the researcher considered the importance of conducting this study in order to know the impact of social networking sites on the youth through Intemet, blogs and chat rooms, as well as attempting to confront them and making them aware of their importance in their daily lives. Accordingly, the study has focused on a random category of youth, whose ages are ranging between 17-21 years old of university students, as being the highest category of usage. Results revealed the following: A high percentage of Emirati youth 77.5% mentioned that they "always" use those sites; the percentage of males, who "always" use social media reached 38.5% while the percentage of females reached 61, since the meaningful value reached 0.05〉0.044, which indicated that WhatsApp, YouTube, Twitter and Facebook are the most commonly used social media by the study individuals. Most of the study individuals use the social networking sites daily 84%, and there are statistically significant differences between males and females in terms of the times of using social media. A high percentage of the Emirati youth uses Internet for more than three hours daily; especially in the evenings, and there are not statistically significant differences between males and females in terms of the most common periods in which social media are used, and the most common age groups of using social media from one year and more range between 17-20. "Home" is the most favorite place of using social media (85.40% mentioned that). Most of the study individuals can make a balance between spending time on Internet and spending time with people outside the world of Internet. The percentage of those, who mentioned that social networking sites affected them positively, was higher than the percentage of the ones, who mentioned that the social media affected them negatively. Among the most prominent usages of social media by the Emirati youth are: staying informed about news and current events, while most of them focused on chatting, followed by sharing photos and images. Most of the sample of study mentioned that the youth are just readers, who comment on what is shared and posted on the social media. The most prominent motives of the Emirati youth for using social media are represented in obtaining information, and communicating with others, which came on top of the motives relevant to the usage of social media, followed by entertainment, education, followed by various motives, including routine etc. Some of the most significant satisfactions achieved through using the social networking sites by the Emirati youth are entertainment and spending leisure time with others.展开更多
‘Selfie’taking was introduced to the common people by smartphones and has become a common practice across the globe in no time.With technological advancement and the popularity of smartphones,selfie-taking has grown...‘Selfie’taking was introduced to the common people by smartphones and has become a common practice across the globe in no time.With technological advancement and the popularity of smartphones,selfie-taking has grown rapidly within a short time.In light of the new trend set by the generation,this study aimed to explore reasons for selfie-taking and selfie-posting on social media and their effects on the social and psychological lives of young adults.A purposive sampling method was adopted to select 20 Indian citizens,between 18 and 24 years.The data were collected through semi-structured interviews and analysed using thematic analysis.Selfie-taking and posting on social media give positive feelings,and it acts as a mood modifier dependent mostly on the favourability and feedback about the post which in turn affects emotions and self-satisfaction.展开更多
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself disc...Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.展开更多
The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is sprea...The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.展开更多
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in ...Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences.展开更多
A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social netw...A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model.展开更多
Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital w...Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital world. These networks can be viewed as a collection of nodes and edges, where users and their interactions are represented as nodes and the connections between them as edges. Understanding the factors that contribute to the formation of these edges is important for studying network structure and processes. This knowledge can be applied to various areas such as identifying communities, recommending friends, and targeting online advertisements. Several factors, including node popularity and friends-of-friends relationships, influence edge formation and network growth. This research focuses on the temporal activity of nodes and its impact on edge formation. Specifically, the study examines how the minimum age of friends-of-friends edges and the average age of all edges connected to potential target nodes influence the formation of network edges. Discrete choice analysis is used to analyse the combined effect of these temporal factors and other well-known attributes like node degree (i.e., the number of connections a node has) and network distance between nodes. The findings reveal that temporal properties have a similar impact as network proximity in predicting the creation of links. By incorporating temporal features into the models, the accuracy of link prediction can be further improved.展开更多
基金the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under Grant No.R.G.P.2/181/44.
文摘This paper aims to introduce the novel concept of neutrosophic crisp soft set(NCSS),including various types of neutrosophic crisp soft sets(NCSSs)and their fundamental operations.We define NCS-mapping and its inverse NCS-mapping between two NCS-classes.We develop a robust mathematical modeling with the help of NCS-mapping to analyze the emerging trends in social networking systems(SNSs)for our various generations.We investigate the advantages,disadvantages,and natural aspects of SNSs for five generations.With the changing of the generations,it is analyzed that emerging trends and the benefits of SNSs are increasing day by day.The suggested modeling with NCS-mapping is applicable in solving various decision-making problems.
基金This research was funded by“the Fundamental Research Funds for the Central Universities,Grant Number XJSJ23180”,https://www.xidian.edu.cn/index.htmand“Shaanxi Province Philosophy and Social Science Research Project,Grant Number 2023QN0046”,http://www.sxsskw.org.cn/.
文摘Background:During the early stages of the COVID-19 pandemic in China,social interactions shifted to online spaces due to lockdowns and social distancing measures.As a result,the impact of online social networking on users’emotional status has become stronger than ever.This study examines the association between online social networking and Internet users’emotional status and how offline reality affects this relationship.Methods:The study utilizes cross-sectional online survey data(n=3004)and Baidu Migration big data from the first 3 months of the pandemic.Two dimensions of online networking are measured:social support and information sources.Results:First,individuals’online social support(β=0.16,p<0.05)and information sources(β=0.08,p<0.01)are both positively associated to their emotional status during the epidemic.Second,these positive associations are moderated by social status and provincial pandemic control interventions.With regards to the moderation effect of social status,the constructive impact of information sources on emotional well-being is more pronounced among individuals from vulnerable groups compared to those who are not.With regard to the moderation effect of provincial interventions,online social support has the potential to alleviate the adverse repercussions of high rates of confirmed COVID-19 cases and strict lockdown measures while simultaneously augmenting the favorable effects of recovery.Conclusion:The various dimensions of social networking exert distinct effects on emotional status through diverse mechanisms,all of which must be taken into account when designing and adapting pandemic-control interventions.
文摘With the vast advancements in Information Technology,the emergence of Online Social Networking(OSN)has also hit its peak and captured the atten-tion of the young generation people.The clone intends to replicate the users and inject massive malicious activities that pose a crucial security threat to the original user.However,the attackers also target this height of OSN utilization,explicitly creating the clones of the user’s account.Various clone detection mechanisms are designed based on social-network activities.For instance,monitoring the occur-rence of clone edges is done to restrict the generation of clone activities.However,this assumption is unsuitable for a real-time environment and works optimally during the simulation process.This research concentrates on modeling and effi-cient clone prediction and avoidance methods to help the social network activists and the victims enhance the clone prediction accuracy.This model does not rely on assumptions.Here,an ensemble Adaptive Random Subspace is used for clas-sifying the clone victims with k-Nearest Neighbour(k-NN)as a base classifier.The weighted clone nodes are analysed using the weighted graph theory concept based on the classified results.When the weighted node’s threshold value is high-er,the trust establishment is terminated,and the clones are ranked and sorted in the higher place for termination.Thus,the victims are alert to the clone propaga-tion over the online social networking end,and the validation is done using the MATLAB 2020a simulation environment.The model shows a better trade-off than existing approaches like Random Forest(RF),Naïve Bayes(NB),and the standard graph model.Various performance metrics like True Positive Rate(TPR),False Alarm Rate(FAR),Recall,Precision,F-measure,and ROC and run time analysis are evaluated to show the significance of the model.
文摘Although today’s users of mobile phones are afforded increasing control as the popularity and richness of information provided by smartphones increases, how these users make choices and evaluations cannot be explicitly expressed. This study uses an acute observation of designers of technology and aesthetics to conduct a mental-model analysis of smartphones with the purpose of explicitly identifying the differences in the schemas of users. This study also modifies the mental model to evaluate the practicability of the mental model. Hence, this study investigates groups of subjects, comparing freshmen and graduating students froma college of design, and adopts a schematized data collection and analysis approach, Interactive Qualitative Analysis (IQA), to ascertain the relationships between factors and establish a complete user mental model. The study results present 11 primary affinity factors: “Pricing,” “Advertisement,” “User Interface,” “Innovation Functions,” “System Maintenance,” “Privacy,” “Utility Functions,” “Personalization,” “Network Performance,” “Customer Service,” and “Multimedia Contents.” The primary driver in evaluating smartphones is found to be “Pricing” for graduating students and “Privacy” for freshmen. The two groups share the same final effect factor, “Multimedia Contents.” This study has successfully identified differences between the different mental models of the two groups, supporting the method that using IQA to perform a quality evaluation of social networking for smartphones is effective. Consequently, platform developers can understand user demand through a mental model and can design good platform functions to effectively improve users’ experience of smartphones.
文摘This study examines why some social networking sites (SNSs) stagnate while other SNSs grow by comparing Cyworld with Facebook. Cyworld was one of the most successful SNSs in the world, but its international expansion efforts failed. Facebook's open technology has had considerable influence on various sectors of the economy and society and allowed it to become a dominant SNS at the global level, whereas Cyworld has remained a local SNS. Facebook's open platform and application programming interface (API) pose a serious challenge to Cyworld's walled-garden approach. Cyworld is based on strong ties fostering close relationships, whereas Facebook expands social networks through its open and weak ties and has more network power than Cyworld. Therefore, openness is the main reason behind the rise of Facebook and the fall of Cyworld.
文摘Internet based social-networking sites like Facebook are highly attractive, user-friendly, and increasingly popular. Current estimates indicate over 750 million users of Facebook alone. However, Internet addiction is an increasing problem amongst today's youth and as yet, is understudied in the United States. This study looked at the relationship between this new social-networking tool and the increasing phenomenon of internet addiction symptoms using both a US college sample (age 19years) and a US high-school sample (age 14years). Findings indicate that SNS (Social Networking Site) activity maybe more predictive of addictive behaviors than general internet use and that higher percents of symptomology occur in those users reporting SNS activity as their primary internet activity.
基金supported by the National Social Science Foundation of China(Grant Nos.:10CTQ010 and 11CTQ038)Wuhan University Development Program for Researchers Born after the 1970s
文摘Purpose: In the Web 2.0 era,leveraging the collective power of user knowledge contributions has become an important part of the study of collective intelligence. This research aims to investigate the factors which influence knowledge contribution behavior of social networking sites(SNS) users.Design/methodology/approach: The data were obtained from an online survey of 251 social networking sites users. Structural equation modeling analysis was used to validate the proposed model.Findings: Our survey shows that the individuals' motivation for knowledge contribution,their capability of contributing knowledge,interpersonal trust and their own habits positively influence their knowledge contribution behavior,but reward does not significantly influence knowledge contribution in the online virtual community.Research limitations: Respondents of our online survey are mainly undergraduate and graduate students. A limited sample group cannot represent all of the population. A larger survey involving more SNS users may be useful.Practical implications: The results have provided some theoretical basis for promoting knowledge contribution and user viscosity.Originality/value: Few studies have investigated the impact of social influence and user habits on knowledge contribution behavior of SNS users. This study can make a theoretical contribution by examining how the social influence processes and habits affect one's knowledge contribution behavior using online communities.
基金supported by the National Social Science Foundation of China(Grant No.:10ATQ004)
文摘Purpose:This study was conducted to investigate the current situation of privacy disclosure(in the Chinese social networking sites.Design/methodology/approach:Data analysis was based on profiles of 240 college students on Renren.com,a popular college-oriented social networking site in China.Users’ privacy disclosure behaviors were studied and gender difference was analyzed particularly.Correlation analysis was conducted to examine the relationships among evaluation indicators involving user name,image,page visibility,message board visibility,completeness of education information and provision of personal information.Findings:A large amount of personal information was disclosed via social networking sites in China.Greater percentage of male users than female users disclosed their personal information.Furthermore,significantly positive relationships were found among page visibility,message board visibility,completeness of education information and provision of personal information.Research limitations:Subjects were collected from only one social networking website.Meanwhile,our survey involves subjective judgments of user name reliability,category of profile images and completeness of information.Practical implications:This study will be of benefit for college administrators,teachers and librarians to design courses for college students on how to use social networking sites safely.Originality /value:This empirical study is one of the first studies to reveal the current situation of privacy disclosure in the Chinese social networking sites and will help the research community gain a deeper understanding of privacy disclosure in the Chinese social networking sites.
基金supported by National Natural Science Foundation of China under Grant No. 90818021, and 9071803National Natural Science Foundation of China under Grant No. 60828003+3 种基金supported by Tsinghua National Laboratory for Information Science and Technology(TNList)NSF CNS0832120National Basic Research Program of China ("973"Program) under grant No. 2010CB328100the National High Technology Research and Development Program of China ("863"Program) under grant No. 2007AA01Z180
文摘A number of mobile Online Social Networking (OSN) services have appeared in the market in recent times. While most mobile systems benefit greatly from cloud services, centralized servers and communications infrastructure is not always available. Nor are location-based services offered to mobile devices without GPS. To take advantage of cloud and to address these problems, a Wi-Fi based multihop networking system called MoNet is proposed. On top of MONET we propose a privacy-aware geosocial networking service called WiFace. Where there is no infrastructure, a distributed content sharing protocol significantly shortens the relay path, reduces conflicts, and improves data availability. Furthermore, a security mechanism is developed to protect privacy. Comprehensive experiments performed on MoNet show that the system is more than sufficient to support social networking and even audio and video applications.
文摘The study, throughout the usage of Emirati youth for the social networking sites and satisfactions achieved, illustrated that the nature of those networks is considered a rapidly developing method of communication, which is accompanied by attempts to impose a number of short abbreviated vocabulary to be used among the youth. Since social networking sites represent one of the most significant tremendous development aspects of information technology, which reached its peak during the last decade, the researcher considered the importance of conducting this study in order to know the impact of social networking sites on the youth through Intemet, blogs and chat rooms, as well as attempting to confront them and making them aware of their importance in their daily lives. Accordingly, the study has focused on a random category of youth, whose ages are ranging between 17-21 years old of university students, as being the highest category of usage. Results revealed the following: A high percentage of Emirati youth 77.5% mentioned that they "always" use those sites; the percentage of males, who "always" use social media reached 38.5% while the percentage of females reached 61, since the meaningful value reached 0.05〉0.044, which indicated that WhatsApp, YouTube, Twitter and Facebook are the most commonly used social media by the study individuals. Most of the study individuals use the social networking sites daily 84%, and there are statistically significant differences between males and females in terms of the times of using social media. A high percentage of the Emirati youth uses Internet for more than three hours daily; especially in the evenings, and there are not statistically significant differences between males and females in terms of the most common periods in which social media are used, and the most common age groups of using social media from one year and more range between 17-20. "Home" is the most favorite place of using social media (85.40% mentioned that). Most of the study individuals can make a balance between spending time on Internet and spending time with people outside the world of Internet. The percentage of those, who mentioned that social networking sites affected them positively, was higher than the percentage of the ones, who mentioned that the social media affected them negatively. Among the most prominent usages of social media by the Emirati youth are: staying informed about news and current events, while most of them focused on chatting, followed by sharing photos and images. Most of the sample of study mentioned that the youth are just readers, who comment on what is shared and posted on the social media. The most prominent motives of the Emirati youth for using social media are represented in obtaining information, and communicating with others, which came on top of the motives relevant to the usage of social media, followed by entertainment, education, followed by various motives, including routine etc. Some of the most significant satisfactions achieved through using the social networking sites by the Emirati youth are entertainment and spending leisure time with others.
文摘‘Selfie’taking was introduced to the common people by smartphones and has become a common practice across the globe in no time.With technological advancement and the popularity of smartphones,selfie-taking has grown rapidly within a short time.In light of the new trend set by the generation,this study aimed to explore reasons for selfie-taking and selfie-posting on social media and their effects on the social and psychological lives of young adults.A purposive sampling method was adopted to select 20 Indian citizens,between 18 and 24 years.The data were collected through semi-structured interviews and analysed using thematic analysis.Selfie-taking and posting on social media give positive feelings,and it acts as a mood modifier dependent mostly on the favourability and feedback about the post which in turn affects emotions and self-satisfaction.
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
基金supported by the National Natural Science Foundation of China(Nos.62006001,62372001)the Natural Science Foundation of Chongqing City(Grant No.CSTC2021JCYJ-MSXMX0002).
文摘Due to the presence of a large amount of personal sensitive information in social networks,privacy preservation issues in social networks have attracted the attention of many scholars.Inspired by the self-nonself discrimination paradigmin the biological immune system,the negative representation of information indicates features such as simplicity and efficiency,which is very suitable for preserving social network privacy.Therefore,we suggest a method to preserve the topology privacy and node attribute privacy of attribute social networks,called AttNetNRI.Specifically,a negative survey-based method is developed to disturb the relationship between nodes in the social network so that the topology structure can be kept private.Moreover,a negative database-based method is proposed to hide node attributes,so that the privacy of node attributes can be preserved while supporting the similarity estimation between different node attributes,which is crucial to the analysis of social networks.To evaluate the performance of the AttNetNRI,empirical studies have been conducted on various attribute social networks and compared with several state-of-the-art methods tailored to preserve the privacy of social networks.The experimental results show the superiority of the developed method in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topology disturbing and attribute hiding parts.The experimental results show the superiority of the developed methods in preserving the privacy of attribute social networks and demonstrate the effectiveness of the topological interference and attribute-hiding components.
基金supported by the National Social Science Fund of China (Grant No.23BGL270)。
文摘The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.
基金funded by Outstanding Youth Team Project of Central Universities(QNTD202308).
文摘Suicide has become a critical concern,necessitating the development of effective preventative strategies.Social media platforms offer a valuable resource for identifying signs of suicidal ideation.Despite progress in detecting suicidal ideation on social media,accurately identifying individuals who express suicidal thoughts less openly or infrequently poses a significant challenge.To tackle this,we have developed a dataset focused on Chinese suicide narratives from Weibo’s Tree Hole feature and introduced an ensemble model named Text Convolutional Neural Network based on Social Network relationships(TCNN-SN).This model enhances predictive performance by leveraging social network relationship features and applying correction factors within a weighted linear fusion framework.It is specifically designed to identify key individuals who can help uncover hidden suicidal users and clusters.Our model,assessed using the bespoke dataset and benchmarked against alternative classification approaches,demonstrates superior accuracy,F1-score and AUC metrics,achieving 88.57%,88.75%and 94.25%,respectively,outperforming traditional TextCNN models by 12.18%,10.84%and 10.85%.We assert that our methodology offers a significant advancement in the predictive identification of individuals at risk,thereby contributing to the prevention and reduction of suicide incidences.
基金supported by the National Natural Science Foundation of China Project(No.62302540)The Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)+2 种基金Natural Science Foundation of Henan Province Project(No.232300420422)The Natural Science Foundation of Zhongyuan University of Technology(No.K2023QN018)Key Research and Promotion Project of Henan Province in 2021(No.212102310480).
文摘A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model.
文摘Social networks like Facebook, X (Twitter), and LinkedIn provide an interaction and communication environment for users to generate and share content, allowing for the observation of social behaviours in the digital world. These networks can be viewed as a collection of nodes and edges, where users and their interactions are represented as nodes and the connections between them as edges. Understanding the factors that contribute to the formation of these edges is important for studying network structure and processes. This knowledge can be applied to various areas such as identifying communities, recommending friends, and targeting online advertisements. Several factors, including node popularity and friends-of-friends relationships, influence edge formation and network growth. This research focuses on the temporal activity of nodes and its impact on edge formation. Specifically, the study examines how the minimum age of friends-of-friends edges and the average age of all edges connected to potential target nodes influence the formation of network edges. Discrete choice analysis is used to analyse the combined effect of these temporal factors and other well-known attributes like node degree (i.e., the number of connections a node has) and network distance between nodes. The findings reveal that temporal properties have a similar impact as network proximity in predicting the creation of links. By incorporating temporal features into the models, the accuracy of link prediction can be further improved.