期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Seeker Optimization with Deep Learning Enabled Sentiment Analysis on Social Media;
1
作者 Hanan M.Alghamdi Saadia H.A.Hamza +1 位作者 Aisha M.Mashraqi Sayed Abdel-Khalek 《Computers, Materials & Continua》 SCIE EI 2022年第12期5985-5999,共15页
World Wide Web enables its users to connect among themselves through social networks,forums,review sites,and blogs and these interactions produce huge volumes of data in various forms such as emotions,sentiments,views... World Wide Web enables its users to connect among themselves through social networks,forums,review sites,and blogs and these interactions produce huge volumes of data in various forms such as emotions,sentiments,views,etc.Sentiment Analysis(SA)is a text organization approach that is applied to categorize the sentiments under distinct classes such as positive,negative,and neutral.However,Sentiment Analysis is challenging to perform due to inadequate volume of labeled data in the domain of Natural Language Processing(NLP).Social networks produce interconnected and huge data which brings complexity in terms of expanding SA to an extensive array of applications.So,there is a need exists to develop a proper technique for both identification and classification of sentiments in social media.To get rid of these problems,Deep Learning methods and sentiment analysis are consolidated since the former is highly efficient owing to its automatic learning capability.The current study introduces a Seeker Optimization Algorithm with Deep Learning enabled SA and Classification(SOADL-SAC)for social media.The presented SOADL-SAC model involves the proper identification and classification of sentiments in social media.In order to attain this,SOADL-SAC model carries out data preprocessing to clean the input data.In addition,Glove technique is applied to generate the feature vectors.Moreover,Self-Head Multi-Attention based Gated Recurrent Unit(SHMA-GRU)model is exploited to recognize and classify the sentiments.Finally,Seeker Optimization Algorithm(SOA)is applied to fine-tune the hyperparameters involved in SHMA-GRU model which in turn enhances the classifier results.In order to validate the enhanced outcomes of the proposed SOADL-SAC model,various experiments were conducted on benchmark datasets.The experimental results inferred the better performance of SOADLSAC model over recent state-of-the-art approaches. 展开更多
关键词 sentiment analysis classification of sentiment social media seeker optimization algorithm glove embedding natural language processing
下载PDF
基于SEOA算法的水库调度优化配置模型应用研究 被引量:5
2
作者 陈哲 杨侃 +3 位作者 吴云 汤梓杰 张天衍 赵友成 《水资源与水工程学报》 CSCD 2019年第5期170-175,共6页
针对水库调度配置中求解最小缺水量的问题,采用社会情感优化算法(SEOA算法),并在生成初始种群和算法收敛速度两方面进行改进,最后将改进后的算法运用到东榆林水库。结果表明:改进后的SEOA算法在水库调度最小缺水量问题中具有效率高、计... 针对水库调度配置中求解最小缺水量的问题,采用社会情感优化算法(SEOA算法),并在生成初始种群和算法收敛速度两方面进行改进,最后将改进后的算法运用到东榆林水库。结果表明:改进后的SEOA算法在水库调度最小缺水量问题中具有效率高、计算量少、寻优能力强的优点,有着一定的实用价值。 展开更多
关键词 水库调度 最小缺水量 社会情感优化算法(seoa) 直线优化 动态情绪阈值
下载PDF
Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network 被引量:3
3
作者 ZHANG Jun ZHAO Shenwei +1 位作者 WANG Yuanqiang ZHU Xinshan 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第2期209-219,共11页
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ... The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data. 展开更多
关键词 urban traffic short-term traffic flow forecasting social emotion optimization algorithm(seoa) back-propagation neural network(BPNN) Metropolis rule
原文传递
基于情绪参照点的多主体自组织路径选择模型 被引量:4
4
作者 李雪岩 李雪梅 +1 位作者 李学伟 吴今培 《系统管理学报》 CSSCI CSCD 北大核心 2017年第2期259-267,276,共10页
为了研究有限理性条件下出行者群体的自组织路径选择行为对交通流量分配的影响,利用累积前景理论结合小世界社会网络,建立了具有交互机制的多主体路径选择模型。在模型中,将参照点的特性与小世界社会情感优化算法思想进行有机结合,基于... 为了研究有限理性条件下出行者群体的自组织路径选择行为对交通流量分配的影响,利用累积前景理论结合小世界社会网络,建立了具有交互机制的多主体路径选择模型。在模型中,将参照点的特性与小世界社会情感优化算法思想进行有机结合,基于出行时间可靠性设计了具有异质特点的参照点及其演化规则,使出行者个体能够依据决策环境及情绪的变化动态地调整自身的出行时间预算,更加符合出行者的实际行为特征。最后,设计了交通流分配演化算法,求解路网配流。研究发现:(1)模型较好地继承了传统模型中的有限理性特点;(2)出行者的异质程度是影响交通流量分配结果的重要因素;(3)本文提出的模型较好地解释了实际交通流分配中的流量变化现象。 展开更多
关键词 自组织 累积前景理论 情绪 参照点 小世界网络 社会情感优化算法 交通流量分配
下载PDF
基于情感强度定律的社会情感优化算法 被引量:2
5
作者 王瑛岐 崔志华 谭瑛 《太原科技大学学报》 2012年第4期249-253,共5页
情感强度定律是在受到外界刺激作用时指导个体情感变化的理论基础。在社会情感优化算法的基础上引入了情感强度定律,考虑到情感在人类个体决策上所起的重要作用,我们对源于外界刺激的情感强度值进行了量化,使个体在自身认知和社会活动... 情感强度定律是在受到外界刺激作用时指导个体情感变化的理论基础。在社会情感优化算法的基础上引入了情感强度定律,考虑到情感在人类个体决策上所起的重要作用,我们对源于外界刺激的情感强度值进行了量化,使个体在自身认知和社会活动中表现了合理的自适应能力,完善了算法的全局、局部搜索协调能力。最后对算法的参数也做了分析和讨论。仿真实验结果表明,该算法有效地提高了求解的性能,能高效地解决高维复杂多模态优化问题。 展开更多
关键词 群体智能 社会情感优化算法 情感强度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部