World Wide Web enables its users to connect among themselves through social networks,forums,review sites,and blogs and these interactions produce huge volumes of data in various forms such as emotions,sentiments,views...World Wide Web enables its users to connect among themselves through social networks,forums,review sites,and blogs and these interactions produce huge volumes of data in various forms such as emotions,sentiments,views,etc.Sentiment Analysis(SA)is a text organization approach that is applied to categorize the sentiments under distinct classes such as positive,negative,and neutral.However,Sentiment Analysis is challenging to perform due to inadequate volume of labeled data in the domain of Natural Language Processing(NLP).Social networks produce interconnected and huge data which brings complexity in terms of expanding SA to an extensive array of applications.So,there is a need exists to develop a proper technique for both identification and classification of sentiments in social media.To get rid of these problems,Deep Learning methods and sentiment analysis are consolidated since the former is highly efficient owing to its automatic learning capability.The current study introduces a Seeker Optimization Algorithm with Deep Learning enabled SA and Classification(SOADL-SAC)for social media.The presented SOADL-SAC model involves the proper identification and classification of sentiments in social media.In order to attain this,SOADL-SAC model carries out data preprocessing to clean the input data.In addition,Glove technique is applied to generate the feature vectors.Moreover,Self-Head Multi-Attention based Gated Recurrent Unit(SHMA-GRU)model is exploited to recognize and classify the sentiments.Finally,Seeker Optimization Algorithm(SOA)is applied to fine-tune the hyperparameters involved in SHMA-GRU model which in turn enhances the classifier results.In order to validate the enhanced outcomes of the proposed SOADL-SAC model,various experiments were conducted on benchmark datasets.The experimental results inferred the better performance of SOADLSAC model over recent state-of-the-art approaches.展开更多
The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic ...The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.展开更多
基金The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4350139DSR01).
文摘World Wide Web enables its users to connect among themselves through social networks,forums,review sites,and blogs and these interactions produce huge volumes of data in various forms such as emotions,sentiments,views,etc.Sentiment Analysis(SA)is a text organization approach that is applied to categorize the sentiments under distinct classes such as positive,negative,and neutral.However,Sentiment Analysis is challenging to perform due to inadequate volume of labeled data in the domain of Natural Language Processing(NLP).Social networks produce interconnected and huge data which brings complexity in terms of expanding SA to an extensive array of applications.So,there is a need exists to develop a proper technique for both identification and classification of sentiments in social media.To get rid of these problems,Deep Learning methods and sentiment analysis are consolidated since the former is highly efficient owing to its automatic learning capability.The current study introduces a Seeker Optimization Algorithm with Deep Learning enabled SA and Classification(SOADL-SAC)for social media.The presented SOADL-SAC model involves the proper identification and classification of sentiments in social media.In order to attain this,SOADL-SAC model carries out data preprocessing to clean the input data.In addition,Glove technique is applied to generate the feature vectors.Moreover,Self-Head Multi-Attention based Gated Recurrent Unit(SHMA-GRU)model is exploited to recognize and classify the sentiments.Finally,Seeker Optimization Algorithm(SOA)is applied to fine-tune the hyperparameters involved in SHMA-GRU model which in turn enhances the classifier results.In order to validate the enhanced outcomes of the proposed SOADL-SAC model,various experiments were conducted on benchmark datasets.The experimental results inferred the better performance of SOADLSAC model over recent state-of-the-art approaches.
基金the Research of New Intelligent Integrated Transport Information System,Technical Plan Project of Binhai New District,Tianjin(No.2015XJR21017)
文摘The back-propagation neural network(BPNN) is a well-known multi-layer feed-forward neural network which is trained by the error reverse propagation algorithm. It is very suitable for the complex of short-term traffic flow forecasting; however, BPNN is easy to fall into local optimum and slow convergence. In order to overcome these deficiencies, a new approach called social emotion optimization algorithm(SEOA) is proposed in this paper to optimize the linked weights and thresholds of BPNN. Each individual in SEOA represents a BPNN. The availability of the proposed forecasting models is proved with the actual traffic flow data of the 2 nd Ring Road of Beijing. Experiment of results show that the forecasting accuracy of SEOA is improved obviously as compared with the accuracy of particle swarm optimization back-propagation(PSOBP) and simulated annealing particle swarm optimization back-propagation(SAPSOBP) models. Furthermore, since SEOA does not respond to the negative feedback information, Metropolis rule is proposed to give consideration to both positive and negative feedback information and diversify the adjustment methods. The modified BPNN model, in comparison with social emotion optimization back-propagation(SEOBP) model, is more advantageous to search the global optimal solution. The accuracy of Metropolis rule social emotion optimization back-propagation(MRSEOBP) model is improved about 19.54% as compared with that of SEOBP model in predicting the dramatically changing data.