Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and e...Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.展开更多
Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementati...Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementation of a decision support system(DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use management. Discharge and glacier geometry changes were simulated with hydrological model, water availability in semiarid environments. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were taken as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs as the models running parallel in the simulation periods. The DSS integrates the hydrological data, geographic data, social and economic statistical data, and establishes the relationships with equations, conditional statements and fuzzy logics. The programming is realized in C++. The DSS has four remarkable features:(1) editable land use maps to assist decision-making;(2) conjunctive use of surface and groundwater resources;(3) interactions among water, earth, ecosystem, and humans; and(4) links with hydrological models. The overall goal of the DSS is to combine the outputs of scientific models, knowledge of experts, and perspectives of stakeholders, into a computer-based system, which allows sustainability impact assessment within regional planning; and to understand ecosystem services and integrate them into land and water management.展开更多
This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the ch...This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector.展开更多
This paper aims to explore the interactive impact between transportation systems and socio-economic development,employing Structural Equation Modeling(SEM)to analyze data from 31 provincial-level administrative region...This paper aims to explore the interactive impact between transportation systems and socio-economic development,employing Structural Equation Modeling(SEM)to analyze data from 31 provincial-level administrative regions in China from 2013 to 2022.It comprehensively considers key indicators from the economic,social,and transportation sectors.The paper constructs a model encompassing 5 latent variables and 15 observed variables.Through in-depth analysis,it reveals the promoting role of transportation systems on economic growth and social development,as well as the demand for transportation system construction and optimization driven by socio-economic development levels.The results indicate that an efficient transportation system can not only directly drive economic growth but also indirectly promote social development by improving social welfare and enhancing quality of life.This paper provides new insights into understanding the complex relationship between transportation systems and socio-economic development and holds significant implications for policymakers in optimizing transportation infrastructure to foster economic and social development.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have fo...The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.展开更多
Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz t...Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.展开更多
Age-related hearing loss (AHL), or presbycusis, is the most common neurodegenerative disorder and top communication deficit of the aged population. Genetic predisposition is one of the major factors in the development...Age-related hearing loss (AHL), or presbycusis, is the most common neurodegenerative disorder and top communication deficit of the aged population. Genetic predisposition is one of the major factors in the development of AHL. Generally, AHL is associated with an age-dependent loss of sensory hair cells, spiral ganglion neurons and stria vascularis cells in the inner ear. Although the mechanisms leading to genetic hearing loss are not completely understood, caspase-family proteases function as important signals in the inner ear pathology. It is now accepted that mouse models are the best tools to study the mechanism of genetic hearing loss or AHL. Here, we provide a brief review of recent studies on hearing improvement in mouse models of AHL by anti-apoptotic treatment.展开更多
For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mech...For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.展开更多
Sandstone is widely distributed in cold regions and the freeze-thaw deterioration of them has caused many geological engineering disasters.As an important and direct index of frost resistance,the strength loss of sand...Sandstone is widely distributed in cold regions and the freeze-thaw deterioration of them has caused many geological engineering disasters.As an important and direct index of frost resistance,the strength loss of sandstones under freeze-thaw actions should be investigated to provide a guidance for the stability assessment of geological engineering.In this research,the UCS(Uniaxial compressive strength)loss of six typical sandstones with different water contents after 0,20,40 and 60 freeze-thaw cycles was measured in the laboratory.The experimental results indicated that the freeze-thaw damage was more serious in sandstones containing high water contents,and the critical saturations for causing a significant loss of UCS under freeze-thaw were 60%-80%for these sandstones.Below this critical saturation,the UCS loss of the sandstones was mainly caused by water weakening rather than freeze-thaw damage.Besides,a developed strength prediction model was proposed by combining the exponential decay function and multiple linear regression method.The initial porosity,elastic modulus and tensile strength of fresh sandstones were a good parameter combination to accurately determine the decay constant in this developed model.The main novelty of this model is that it can accurately and easily estimate the UCS loss of sandstones after any freeze-thaw cycle only using the initial parameters of fresh sandstones,but it does not need to perform freeze-thaw and mechanical strength experiments.This study not only provides an accurate prediction model of UCS under freeze-thaw,but also makes a contribution to better understanding the frost resistance mechanism of sandstones.展开更多
Objective To establish an animal model of sudden onset sensorineural hearing loss (SSNHL) to study its mechanisms. Materials and methods The inner ear was exposed to 3-nitropropionic acid at 0.5 mol/L (3-NP (H)) and 0...Objective To establish an animal model of sudden onset sensorineural hearing loss (SSNHL) to study its mechanisms. Materials and methods The inner ear was exposed to 3-nitropropionic acid at 0.5 mol/L (3-NP (H)) and 0.3 mol/L (3-NP (L)) through the round window membrane for 30 minutes in 50 male guinea pigs. Thresholds of auditory brainstem responses(ABR) were established before the treatment and retested at 4 hours, 1 day, 3 days and 6 days following 3-NP exposure. Control animals were treated with phosphate buffered saline (PBS) and their ABRs were retested at 4 hours and 1 day after the treatment. Animals were monitored for nystagmus and postural signs of vestibular dysfunction, using a digital video camera, following the treatment procedure. Specimens were taken at 12 hours, 1 day, 3 days and 7 days following 3-NP(H) exposure and embedded in JB4 for light microscopy observation. Results ABRs were lost in all animals tested at 4 hours following 3-NP (H) exposure. The rate of complete ABR loss decreased as post-treatment test time increased. ABRs were lost in 80% (4/5) of the animals at 1 day after exposure to 3-NP (L). Spontaneous horizontal nystagmus with a fast phase away from the treated ear developed in all 3-NP (H)-treated animals and in 20 % ( 1/5) of the animals exposed to 3-NP (L), except for the one treated bilaterally. Various degree of postural disturbances consistent with unilateral vestibular dysfunction, such as spontaneous barrel rolling towards the exposure side while walking, were seen in all animals exposed to 3-NP(H) and 40% (2/5) of animals exposed to 3-NP(L), except for the one animal treated bilaterally, which showed no signs of imbalance. Both nystagmus and postural disturbances resolved in 2 days following 3-NP exposure. Histological study showed temporary edema tin the organ or Corti, Claudius cells and the inner sulcus cells 3 days after 3-NP (H) treatment. Enlargement of intercellular space in the spiral prominence was first noticed at 12 hours post-3-NP (H) exposure, progressed at day 3 and recovered at day 7. Vacuoles in the cellular plasm and nucleus was seen as early as at 12 hours post-3-NP exposure in the spiral ganglion cells, and signs of degeneration were visible at day 7. Conclusion Inner ear exposure to 3-NP through the round window membrane appears to reproduce clinic manifestations and may serve as a legitimate animal model of SSNHL展开更多
Due to the influence of magnetic hysteresis and energy loss inherent in giant magnetostrictive materials (GMM), output displacement accuracy of giant magnetostrictive actuator (GMA) can not meet the precision and ...Due to the influence of magnetic hysteresis and energy loss inherent in giant magnetostrictive materials (GMM), output displacement accuracy of giant magnetostrictive actuator (GMA) can not meet the precision and ultra precision machining. Using a GMM rod as the core driving element, a GMA which may be used in the field of precision and ultra precision drive engineering is designed through modular design method. Based on the Armstrong theory and elastic Gibbs free energy theory, a nonlinear magnetostriction model which considers magnetic hysteresis and energy loss characteristics is established. Moreover, the mechanical system differential equation model for GMA is established by utilizing D'Alembert's principle. Experimental results show that the model can preferably predict magnetization property, magnetic potential orientation, energy loss for GMM. It is also able to describe magnetostrictive elongation and output displacement of GMA. Research results will provide a theoretical basis for solving the dynamic magnetic hysteresis, energy loss and working precision for GMA fundamentally.展开更多
The potential future increase in corn-based biofuel may be expected to have a negative impact on water quality in streams and lakes of the Midwestern US due to increased agricultural chemicals usage. This study used t...The potential future increase in corn-based biofuel may be expected to have a negative impact on water quality in streams and lakes of the Midwestern US due to increased agricultural chemicals usage. This study used the SWAT model to assess the impact of continuous-corn farming on sediment and phosphorus loading in Upper Rock River watershed in Wisconsin. It was assumed that farmers in the area where corn was rotated with soybean would progressively skip soybean for continuous corn as corn became more profitable. Simulations using SWAT indicated that conversion of corn-soybean to corn-corn-soybean would cause 11% and 2% increase in sediment yield and TP loss, respectively. The conversion of corn-soybean to continuous corn caused 55% and 35% increase in sediment yield and TP loss, respectively. However, this increase could be mitigated by applying various BMPs and/or conservation practices such as conservation tillage, fertilizer management and vegetative buffer strips. The conversion to continuous corn tilled with conservation tillage reduced sediment yield by 2% and did not change TP loss. Increase in P fertilizer amount was roughly proportional to increase in TP loss and 11% more TP was lost when fertilizer was applied four months before planting. Vegetative buffer strips, 15 to 30 m wide, around corn farms reduced sediment yield by 51 to 70% and TP loss by 41 to 63%.展开更多
Wideband IMT-Advanced mobile communication systems tend to operate in the high frequency bands due to a relatively large capacity available. Thus, Measurement and modelling methods of radio propaga- tion eharaeteristi...Wideband IMT-Advanced mobile communication systems tend to operate in the high frequency bands due to a relatively large capacity available. Thus, Measurement and modelling methods of radio propaga- tion eharaeteristics are proposed for the field test of Chinese 4th generation (4G) trial system. The mea- surement system is established for 3.5GHz based on the sophistieated measurement instruments and the virtual instrument teehnology. The characteristic parameters of radio propagation sueh as path loss (PL) exponent and shadow fading standard deviation are extracted from measurement data, which result in the path loss model finally. The comparisons with other existing international models results validate our mea- surement in terms of path loss model. Based on the analysis of the existing extension model assumed for the microwave frequency at 3.5GHz, we find that the Stanford University Interim (SUI) model fits very well with the measurement result in the hotspot scenario, while the COST 231 model is closer to the mea- surement result in the suburban scenario. This result provides a measurement-based channel referenee for the development of the future IMT-Advanced systems in China.展开更多
The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly d...The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.展开更多
Objective:To investigate the effects of conductive hearing loss (CHL) on vestibular evoked myogenic potentials (VEMPs) using a simulated CHL model, and to provide the basis for future studies. Methods:Twenty-one healt...Objective:To investigate the effects of conductive hearing loss (CHL) on vestibular evoked myogenic potentials (VEMPs) using a simulated CHL model, and to provide the basis for future studies. Methods:Twenty-one healthy subjects were recruited in this study. We measured ocular VEMPs (oVEMPs) and cervical VEMPs (cVEMPs) in these subjects by air-conduction sound (ACS) stimulation. CHL was simulated later by blocking the right external auditory canal with a soundproof earplug to evaluate its impacts on VEMPs. Subjects' responses before simulated CHL served as the control, and were compared to their responses following simulated CHL. Results: oVEMPs following simulated CHL showed decreased response rate, elevated thresholds, attenuated amplitudes and prolonged N1 latencies compared with those before simulated CHL, and the differences were statistically significant. Similarly, cVEMPs following simulated CHL also showed decreased response rate, elevated thresholds and attenuated amplitudes, with prolonged P1 latencies compared with those before simulated CHL, although only differences in response rate, threshold and amplitude were significant. Conclusions:Conductive hearing loss affects the response rate and other response parameters in oVEMPs and cVEMPs.展开更多
This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly prem...This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly premixed wood particles. The assumed flame structure consists of a broad preheat-vaporization zone where the rate of gas-phase chemical reaction is small, a thin reaction zone composed of three regions: gas, tar and char combustion where convection and the vaporization rate of the fuel particles are small, and a broad convection zone. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large and the equivalence ratio is larger than unity(i.e.u≥1). The principal attention is made on the determination of a non-linear burning velocity correlation. Consequently, the impacts of radiation, heat loss and particle size as the determining factors on the flame temperature and burning velocity of biomass particles are declared in this research.展开更多
Podocyte loss was well known in type 2 diabetic nephropathy patients. The objective of the present study was to determine the number of podocytes and the degree of albuminuria in diabetic KK-Ay/Ta (KK-Ay) mice which h...Podocyte loss was well known in type 2 diabetic nephropathy patients. The objective of the present study was to determine the number of podocytes and the degree of albuminuria in diabetic KK-Ay/Ta (KK-Ay) mice which had been reported as diabetic nephropathy model. Diabetic KK-Ay mice, diabetic KK/Ta mice and non-diabetic BALB/cA Jcl (BALB/cA) mice were studied. We analyzed glomerular lesions in all mice by morphometric analysis and immunofluorescence to determine the number of podocytes. Level of urinary albumin was also measured. Glomerular enlargement and mesangial expansion were observed in KK-Ay mice. Mean number of podocytes per glomerulus (NG pod) in diabetic KK-Ay mice was significantly lower than that in non-diabetic BALB/cA mice. Mean NG pod/glomerular area (GA) per glomerulus was also significantly decreased in diabetic KK-Ay mice. The level of urinary albumin/creatinine ratio (ACR) in diabetic KK-Ay mice was significantly higher than that in non-diabetic BALB/cA mice. These data suggest that podocyte loss might induce albuminuria in KK-Ay mice. This finding confirmed our previous report that KK-Ay mice, especially in terms of histological findings, are a suitable animal model for glomerular injury in type 2 diabetic nephropathy.展开更多
A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) w...A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) were designed for the throttling experiment to compare the throttling effect using the equivalent diameter ratio (RED) and diameter ratio (RD ) as key parameters, respectively. Meanwhile, effective metrical conditions were provided for experimental accuracy. The throttling model form was determined according to the theoretical throttling model of SO. Then the unknown parameters involved were identified by experimental data. A good concordance between the modeling computation and experimental results shows a validation of the MO throtting model.展开更多
基金supported by the National Key Research and Development Program of China (2021YFA0805902,2022YFF0710703)National Natural Science Foundation of China (32201257)+1 种基金Science and Technology Innovation Project of Xiongan New Area (2022XAGG0121)Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2019QNRC001)。
文摘Hereditary hearing loss(HHL),a genetic disorder that impairs auditory function,significantly affects quality of life and incurs substantial economic losses for society.To investigate the underlying causes of HHL and evaluate therapeutic outcomes,appropriate animal models are necessary.Pigs have been extensively used as valuable large animal models in biomedical research.In this review,we highlight the advantages of pig models in terms of ear anatomy,inner ear morphology,and electrophysiological characteristics,as well as recent advancements in the development of distinct genetically modified porcine models of hearing loss.Additionally,we discuss the prospects,challenges,and recommendations regarding the use pig models in HHL research.Overall,this review provides insights and perspectives for future studies on HHL using porcine models.
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金supported by German-Sino bilateral collaboration research project SuMaRiO funded by the German Federal Ministry of Education and Researchthe support of NSFC-UNEP Project (41361140361): Ecological Responses to Climatic Change and Land-cover Change in Arid and Semiarid Central Asia during the Past 500 Years
文摘Hydrological models are often linked with other models in cognate sciences to understand the interactions among climate, earth, water, ecosystem, and human society. This paper presents the development and implementation of a decision support system(DSS) that links the outputs of hydrological models with real-time decision making on social-economic assessments and land use management. Discharge and glacier geometry changes were simulated with hydrological model, water availability in semiarid environments. Irrigation and ecological water were simulated by a new commercial software MIKE HYDRO. Groundwater was simulated by MODFLOW. All the outputs of theses hydrological models were taken as inputs into the DSS in three types of links: regression equations, stationary data inputs, or dynamic data inputs as the models running parallel in the simulation periods. The DSS integrates the hydrological data, geographic data, social and economic statistical data, and establishes the relationships with equations, conditional statements and fuzzy logics. The programming is realized in C++. The DSS has four remarkable features:(1) editable land use maps to assist decision-making;(2) conjunctive use of surface and groundwater resources;(3) interactions among water, earth, ecosystem, and humans; and(4) links with hydrological models. The overall goal of the DSS is to combine the outputs of scientific models, knowledge of experts, and perspectives of stakeholders, into a computer-based system, which allows sustainability impact assessment within regional planning; and to understand ecosystem services and integrate them into land and water management.
文摘This study proposes a novel approach for estimating automobile insurance loss reserves utilizing Artificial Neural Network (ANN) techniques integrated with actuarial data intelligence. The model aims to address the challenges of accurately predicting insurance claim frequencies, severities, and overall loss reserves while accounting for inflation adjustments. Through comprehensive data analysis and model development, this research explores the effectiveness of ANN methodologies in capturing complex nonlinear relationships within insurance data. The study leverages a data set comprising automobile insurance policyholder information, claim history, and economic indicators to train and validate the ANN-based reserving model. Key aspects of the methodology include data preprocessing techniques such as one-hot encoding and scaling, followed by the construction of frequency, severity, and overall loss reserving models using ANN architectures. Moreover, the model incorporates inflation adjustment factors to ensure the accurate estimation of future loss reserves in real terms. Results from the study demonstrate the superior predictive performance of the ANN-based reserving model compared to traditional actuarial methods, with substantial improvements in accuracy and robustness. Furthermore, the model’s ability to adapt to changing market conditions and regulatory requirements, such as IFRS17, highlights its practical relevance in the insurance industry. The findings of this research contribute to the advancement of actuarial science and provide valuable insights for insurance companies seeking more accurate and efficient loss reserving techniques. The proposed ANN-based approach offers a promising avenue for enhancing risk management practices and optimizing financial decision-making processes in the automobile insurance sector.
文摘This paper aims to explore the interactive impact between transportation systems and socio-economic development,employing Structural Equation Modeling(SEM)to analyze data from 31 provincial-level administrative regions in China from 2013 to 2022.It comprehensively considers key indicators from the economic,social,and transportation sectors.The paper constructs a model encompassing 5 latent variables and 15 observed variables.Through in-depth analysis,it reveals the promoting role of transportation systems on economic growth and social development,as well as the demand for transportation system construction and optimization driven by socio-economic development levels.The results indicate that an efficient transportation system can not only directly drive economic growth but also indirectly promote social development by improving social welfare and enhancing quality of life.This paper provides new insights into understanding the complex relationship between transportation systems and socio-economic development and holds significant implications for policymakers in optimizing transportation infrastructure to foster economic and social development.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
文摘The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Key R&D Program of China(No.2020YFB1805002)the Key Project of State Key Lab of Networking and Switching Technology(No.NST20180105).
文摘Terahertz(THz)communication has been envisioned as a key enabling technology for sixthgeneration(6G).In this paper,we present an extensive THz channel measurement campaign for 6G wireless communications from 220 GHz to 330 GHz.Furthermore,the path loss is analyzed and modeled by using two single-frequency path loss models and a multiplefrequencies path loss model.It is found that at most frequency points,the measured path loss is larger than that in the free space.But at around 310 GHz,the propagation attenuation is relatively weaker compared to that in the free space.Also,the frequency dependence of path loss is observed and the frequency exponent of the multiple-frequencies path loss model is 2.1.Moreover,the cellular performance of THz communication systems is investigated by using the obtained path loss model.Simulation results indicate that the current inter-site distance(ISD)for the indoor scenario is too small for THz communications.Furthermore,the tremendous capacity gain can be obtained by using THz bands compared to using microwave bands and millimeter wave bands.Generally,this work can give an insight into the design and optimization of THz communication systems for 6G.
基金supported by National Natural Science Foundation of China (No. 81271092, 81570927)Scientific and Technological Developing Grant in Shandong Province (2014GSF118083)+1 种基金Scientific and Technological Developing Grant for Medicine and Health in Shandong Province (2015WS0507)Research Initiation Grant of Binzhou Medical University (BY2012KYQD01, BY2013KYQD15)
文摘Age-related hearing loss (AHL), or presbycusis, is the most common neurodegenerative disorder and top communication deficit of the aged population. Genetic predisposition is one of the major factors in the development of AHL. Generally, AHL is associated with an age-dependent loss of sensory hair cells, spiral ganglion neurons and stria vascularis cells in the inner ear. Although the mechanisms leading to genetic hearing loss are not completely understood, caspase-family proteases function as important signals in the inner ear pathology. It is now accepted that mouse models are the best tools to study the mechanism of genetic hearing loss or AHL. Here, we provide a brief review of recent studies on hearing improvement in mouse models of AHL by anti-apoptotic treatment.
基金Project(61673199)supported by the National Natural Science Foundation of ChinaProject(ICT1800400)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China
文摘For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(Nos.42072300 and 41702291).
文摘Sandstone is widely distributed in cold regions and the freeze-thaw deterioration of them has caused many geological engineering disasters.As an important and direct index of frost resistance,the strength loss of sandstones under freeze-thaw actions should be investigated to provide a guidance for the stability assessment of geological engineering.In this research,the UCS(Uniaxial compressive strength)loss of six typical sandstones with different water contents after 0,20,40 and 60 freeze-thaw cycles was measured in the laboratory.The experimental results indicated that the freeze-thaw damage was more serious in sandstones containing high water contents,and the critical saturations for causing a significant loss of UCS under freeze-thaw were 60%-80%for these sandstones.Below this critical saturation,the UCS loss of the sandstones was mainly caused by water weakening rather than freeze-thaw damage.Besides,a developed strength prediction model was proposed by combining the exponential decay function and multiple linear regression method.The initial porosity,elastic modulus and tensile strength of fresh sandstones were a good parameter combination to accurately determine the decay constant in this developed model.The main novelty of this model is that it can accurately and easily estimate the UCS loss of sandstones after any freeze-thaw cycle only using the initial parameters of fresh sandstones,but it does not need to perform freeze-thaw and mechanical strength experiments.This study not only provides an accurate prediction model of UCS under freeze-thaw,but also makes a contribution to better understanding the frost resistance mechanism of sandstones.
基金Supported by grants from National Natural Science Foundation of China: 30572019Xinhua Hospital Foundation, Shanghai Jiaotong University School of Medicine.
文摘Objective To establish an animal model of sudden onset sensorineural hearing loss (SSNHL) to study its mechanisms. Materials and methods The inner ear was exposed to 3-nitropropionic acid at 0.5 mol/L (3-NP (H)) and 0.3 mol/L (3-NP (L)) through the round window membrane for 30 minutes in 50 male guinea pigs. Thresholds of auditory brainstem responses(ABR) were established before the treatment and retested at 4 hours, 1 day, 3 days and 6 days following 3-NP exposure. Control animals were treated with phosphate buffered saline (PBS) and their ABRs were retested at 4 hours and 1 day after the treatment. Animals were monitored for nystagmus and postural signs of vestibular dysfunction, using a digital video camera, following the treatment procedure. Specimens were taken at 12 hours, 1 day, 3 days and 7 days following 3-NP(H) exposure and embedded in JB4 for light microscopy observation. Results ABRs were lost in all animals tested at 4 hours following 3-NP (H) exposure. The rate of complete ABR loss decreased as post-treatment test time increased. ABRs were lost in 80% (4/5) of the animals at 1 day after exposure to 3-NP (L). Spontaneous horizontal nystagmus with a fast phase away from the treated ear developed in all 3-NP (H)-treated animals and in 20 % ( 1/5) of the animals exposed to 3-NP (L), except for the one treated bilaterally. Various degree of postural disturbances consistent with unilateral vestibular dysfunction, such as spontaneous barrel rolling towards the exposure side while walking, were seen in all animals exposed to 3-NP(H) and 40% (2/5) of animals exposed to 3-NP(L), except for the one animal treated bilaterally, which showed no signs of imbalance. Both nystagmus and postural disturbances resolved in 2 days following 3-NP exposure. Histological study showed temporary edema tin the organ or Corti, Claudius cells and the inner sulcus cells 3 days after 3-NP (H) treatment. Enlargement of intercellular space in the spiral prominence was first noticed at 12 hours post-3-NP (H) exposure, progressed at day 3 and recovered at day 7. Vacuoles in the cellular plasm and nucleus was seen as early as at 12 hours post-3-NP exposure in the spiral ganglion cells, and signs of degeneration were visible at day 7. Conclusion Inner ear exposure to 3-NP through the round window membrane appears to reproduce clinic manifestations and may serve as a legitimate animal model of SSNHL
基金Supported by National Natural Science Foundation of China(Grant No.51305277)Doctoral Program of Higher Education China(Grant No.20132102120007)+1 种基金Shenyang Science and Technology Plan Project(Grant No.F15-199-1-14)China Postdoctoral Science Foundation(Grant No.2014T70261)
文摘Due to the influence of magnetic hysteresis and energy loss inherent in giant magnetostrictive materials (GMM), output displacement accuracy of giant magnetostrictive actuator (GMA) can not meet the precision and ultra precision machining. Using a GMM rod as the core driving element, a GMA which may be used in the field of precision and ultra precision drive engineering is designed through modular design method. Based on the Armstrong theory and elastic Gibbs free energy theory, a nonlinear magnetostriction model which considers magnetic hysteresis and energy loss characteristics is established. Moreover, the mechanical system differential equation model for GMA is established by utilizing D'Alembert's principle. Experimental results show that the model can preferably predict magnetization property, magnetic potential orientation, energy loss for GMM. It is also able to describe magnetostrictive elongation and output displacement of GMA. Research results will provide a theoretical basis for solving the dynamic magnetic hysteresis, energy loss and working precision for GMA fundamentally.
文摘The potential future increase in corn-based biofuel may be expected to have a negative impact on water quality in streams and lakes of the Midwestern US due to increased agricultural chemicals usage. This study used the SWAT model to assess the impact of continuous-corn farming on sediment and phosphorus loading in Upper Rock River watershed in Wisconsin. It was assumed that farmers in the area where corn was rotated with soybean would progressively skip soybean for continuous corn as corn became more profitable. Simulations using SWAT indicated that conversion of corn-soybean to corn-corn-soybean would cause 11% and 2% increase in sediment yield and TP loss, respectively. The conversion of corn-soybean to continuous corn caused 55% and 35% increase in sediment yield and TP loss, respectively. However, this increase could be mitigated by applying various BMPs and/or conservation practices such as conservation tillage, fertilizer management and vegetative buffer strips. The conversion to continuous corn tilled with conservation tillage reduced sediment yield by 2% and did not change TP loss. Increase in P fertilizer amount was roughly proportional to increase in TP loss and 11% more TP was lost when fertilizer was applied four months before planting. Vegetative buffer strips, 15 to 30 m wide, around corn farms reduced sediment yield by 51 to 70% and TP loss by 41 to 63%.
基金supported by the High Technology Research and Development Programme of China(2007AA01Z278)
文摘Wideband IMT-Advanced mobile communication systems tend to operate in the high frequency bands due to a relatively large capacity available. Thus, Measurement and modelling methods of radio propaga- tion eharaeteristics are proposed for the field test of Chinese 4th generation (4G) trial system. The mea- surement system is established for 3.5GHz based on the sophistieated measurement instruments and the virtual instrument teehnology. The characteristic parameters of radio propagation sueh as path loss (PL) exponent and shadow fading standard deviation are extracted from measurement data, which result in the path loss model finally. The comparisons with other existing international models results validate our mea- surement in terms of path loss model. Based on the analysis of the existing extension model assumed for the microwave frequency at 3.5GHz, we find that the Stanford University Interim (SUI) model fits very well with the measurement result in the hotspot scenario, while the COST 231 model is closer to the mea- surement result in the suburban scenario. This result provides a measurement-based channel referenee for the development of the future IMT-Advanced systems in China.
基金supported in part by National Natural Science Foundation of China(NSFC)under Project No.51737010.
文摘The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.
基金supported by grants from the National Natural Science Foundation of China, China (No. 81670945, 81541040)Fundamental Research Funds for the Central Universities, China (No. 2012jdhz13)+1 种基金Shaanxi Major International Cooperative Project, China (No. 2013KW-28)Key Science and Technology Program of Xi'an, China (No. SF1315(1))
文摘Objective:To investigate the effects of conductive hearing loss (CHL) on vestibular evoked myogenic potentials (VEMPs) using a simulated CHL model, and to provide the basis for future studies. Methods:Twenty-one healthy subjects were recruited in this study. We measured ocular VEMPs (oVEMPs) and cervical VEMPs (cVEMPs) in these subjects by air-conduction sound (ACS) stimulation. CHL was simulated later by blocking the right external auditory canal with a soundproof earplug to evaluate its impacts on VEMPs. Subjects' responses before simulated CHL served as the control, and were compared to their responses following simulated CHL. Results: oVEMPs following simulated CHL showed decreased response rate, elevated thresholds, attenuated amplitudes and prolonged N1 latencies compared with those before simulated CHL, and the differences were statistically significant. Similarly, cVEMPs following simulated CHL also showed decreased response rate, elevated thresholds and attenuated amplitudes, with prolonged P1 latencies compared with those before simulated CHL, although only differences in response rate, threshold and amplitude were significant. Conclusions:Conductive hearing loss affects the response rate and other response parameters in oVEMPs and cVEMPs.
文摘This paper presents the combined influence of heat-loss and radiation on the pyrolysis of biomass particles by considering the structure of one-dimensional, laminar and steady state flame propagation in uniformly premixed wood particles. The assumed flame structure consists of a broad preheat-vaporization zone where the rate of gas-phase chemical reaction is small, a thin reaction zone composed of three regions: gas, tar and char combustion where convection and the vaporization rate of the fuel particles are small, and a broad convection zone. The analysis is performed in the asymptotic limit, where the value of the characteristic Zeldovich number is large and the equivalence ratio is larger than unity(i.e.u≥1). The principal attention is made on the determination of a non-linear burning velocity correlation. Consequently, the impacts of radiation, heat loss and particle size as the determining factors on the flame temperature and burning velocity of biomass particles are declared in this research.
文摘Podocyte loss was well known in type 2 diabetic nephropathy patients. The objective of the present study was to determine the number of podocytes and the degree of albuminuria in diabetic KK-Ay/Ta (KK-Ay) mice which had been reported as diabetic nephropathy model. Diabetic KK-Ay mice, diabetic KK/Ta mice and non-diabetic BALB/cA Jcl (BALB/cA) mice were studied. We analyzed glomerular lesions in all mice by morphometric analysis and immunofluorescence to determine the number of podocytes. Level of urinary albumin was also measured. Glomerular enlargement and mesangial expansion were observed in KK-Ay mice. Mean number of podocytes per glomerulus (NG pod) in diabetic KK-Ay mice was significantly lower than that in non-diabetic BALB/cA mice. Mean NG pod/glomerular area (GA) per glomerulus was also significantly decreased in diabetic KK-Ay mice. The level of urinary albumin/creatinine ratio (ACR) in diabetic KK-Ay mice was significantly higher than that in non-diabetic BALB/cA mice. These data suggest that podocyte loss might induce albuminuria in KK-Ay mice. This finding confirmed our previous report that KK-Ay mice, especially in terms of histological findings, are a suitable animal model for glomerular injury in type 2 diabetic nephropathy.
基金the National Natural Science Foundation of China(Grant No.50578049)
文摘A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) were designed for the throttling experiment to compare the throttling effect using the equivalent diameter ratio (RED) and diameter ratio (RD ) as key parameters, respectively. Meanwhile, effective metrical conditions were provided for experimental accuracy. The throttling model form was determined according to the theoretical throttling model of SO. Then the unknown parameters involved were identified by experimental data. A good concordance between the modeling computation and experimental results shows a validation of the MO throtting model.