The aim of this research project is to assess indirect water consumption,that represents the water consumed in the upstream part of the production life cycle.Estimations are provided for agriculture related companies,...The aim of this research project is to assess indirect water consumption,that represents the water consumed in the upstream part of the production life cycle.Estimations are provided for agriculture related companies,as agriculture represents 70%of water consumption on Earth.This consumption varies greatly according to the countries where supply chain is located.The estimation is attempted for 27 European listed companies in sectors relying on agriculture in its supply chain.A data is estimated for 22 companies,showing that indirect water consumption is much more important than direct one.Strategic questions raised through the estimation of indirect water consumption in various subsectors show the interest in this data,which represents the equivalent of Carbon Scope 3 for water issues.展开更多
[Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different w...[Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different water amounts in sunlight greenhouse of the arid areas in Ningxia,the soil water was measured and the water consumption of crop was calculated.[Result]When irrigation amount was 563 mm,the water consumption as a whole gradually increased with the delay of growth period,reached peak during the thriving stage of fruit setting,and then gradually declined;in each treatment,the daily water consumption increased with the increasing of irrigation amount during each growth period.However,the consumption of soil moisture reduced with the significant increase of irrigation.563 mm of irrigation amount could meet the water requirements of cucumber and began to add water to soil,and water utilization efficiency could reach 33.4 kg/m3.[Conclusion]The research had provided theoretical basis for water management in the production process of greenhouse cucumber.展开更多
There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and ...There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method.展开更多
This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-...This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-yielding, high-quality and highefficiency cultivation and water-saving irrigation of greenhouse celery. Total five irrigation amounts were designed, 117.5 (T1), 160.0 (T2), 202.5 (T3), 245.0 (T4) and 287.5 (CK) mm/hm2, and the effects of different irrigation amounts on yield, water consumption and water use efficiency of celery were studied by plot experiment. The results showed that at the soil depth of 0-40 cm, the soil water storages of different treatments ranked as T3's〉T4's〉CK's〉T2's〉T1's, and the celery water consumptions ranked as CK's〉T4's〉T3's〉T2's〉T1's. At the same time, the soil water storage in different treatment group declined with the growth of celery, and finally increased at the harvest period. Among different irrigation amounts, the water use effi- ciency and irrigation water use efficiency all ranked as T1's〉T2's〉T3's〉T4's〉CK's. The water consumption of celery was positively related to irrigation amount (P〈 0.01), and was negatively related to water use efficiency (P〈0.01) and irrigation water use efficiency (P〈0.05). When the irrigation amount was below 253 mm/hm2, the celery yield was positively related to irrigation amount (P〈0.01). There was also a positive correlation between celery output and irrigation amount. Compared with those of CK, the benefit of the T4 treatment group was equal, and the water consumption was reduced by 14.78%. In high-efficiency solar greenhouse, the irrigation amount of drip-irrigated celery is recommended as 245 mm/hm2.展开更多
[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high...[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high-yield winter wheat cultivar Jimai 22 as the experimental material, field experiment was conducted during 2008- 2010. A total of 3 planting patterns were designed, uniform row, wide-narrow row and furrow. Under each planting pattern, total four irrigation patterns were designed, no irrigation (Wo), irrigation at jointing state (Wl), irrigation at jointing and anthesis stages (W2) and irrigation at jointing, anthesis and milking stages (W3), and the irri- gation amount per treatment was all 60 mm. [Result] Under the three planting pat- terns, with the increased irrigation amount, the total water consumption of the exper- imental field increased; the proportion of irrigation in the total water consumption in- creased, and that of soil water consumption in the total water consumption de- creased significantly. Compared with W0 treatment, various irrigation treatments sig- nificantly increased the post-anthesis dry matter accumulation in wheat plants; with the increased irrigation amount, the grain yield under the three planting patterns all increased, while the water use efficiency (WUE) decreased. Under the same irriga- tion conditions, compared with other two planting patterns, furrow planting increased the total water consumption of the experimental field, increased the proportion of soil water consumption in the total water consumption, and improved the WUE and wheat grain yield. [Conclusion] Under the experimental conditions, considering both wheat grain yield and WUE, furrow planting with moderately deficit irrigation at joint- ing and anthesis stages is more suitable for the winter wheat production in North China Plain.展开更多
Water shortage is a serious issue threatening the sustainable development of agriculture in the North China Plain, with the winter wheat (Triticum aestivum L.) as its largest water-consuming crop. The effects of til...Water shortage is a serious issue threatening the sustainable development of agriculture in the North China Plain, with the winter wheat (Triticum aestivum L.) as its largest water-consuming crop. The effects of tillage practices on the water consumption and water use efifciency (WUE) of wheat under high-yield conditions using supplemental irrigation based on testing soil moisture dynamic change were examined in this study. This experiment was conducted from 2007 to 2010, with ifve tillage practice treatments, namely, strip rotary tillage (SR), strip rotary tillage after subsoiling (SRS), rotary tillage (R), rotary tillage after subsoiling (RS), and plowing tillage (P). The results showed that in the SRS and RS treatments the total water and soil water consumptions were 11.81, 25.18%and 12.16, 14.75%higher than those in SR and R treatments, respectively. The lowest ratio of irrigation consumption to total water consumption in the SRS treatment was 18.53 and 21.88%for the 2008-2009 and 2009-2010 growing seasons, respectively. However, the highest percentage of water consumption was found in the SRS treatment from anthesis to maturity. No signiifcant difference was found between the WUE of the lfag leaf at the later iflling stage in the SRS and RS treatments, but the lfag leaf WUE at these stages were higher than those of other treatments. The SRS and RS treatments exhibited the highest grain yield (9 573.76 and 9 507.49 kg ha-1 for 3-yr average) with no signiifcant difference between the two treatments, followed by P, R and SR treatments. But the SRS treatment had the highest WUE. Thus, the 1-yr subsoiling tillage, plus 2 yr of strip rotary planting operation may be an efifcient measure to increase wheat yield and WUE.展开更多
In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological...In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological footprints can be used to quantitatively evaluate the water consumption of social-economic activities and their influence on the eco-environments.In addition,increase of the water footprint indicates the expansion of artificial oasis,and the influence on the natural oasis could be reflected by the variation of the ecological footprint.This study was conducted to answer a scientific question that what is the quantitative relationship between the expansion of the artificial oasis and the degradation of the natural oasis in the arid environments of Xinjiang,China.Thus,based on the social-economic data,water consumption data and meteorological data during 2001–2015,we calculated the water and ecological footprints to express the human-related pressure exerted on the water resources and arid environments in Xinjiang(including 14 prefectures and cities),and explore the relationship between the water and ecological footprints and its mechanism by using the coupling analysis and Granger causality test.The results show that both the water and ecological footprints of Xinjiang increased significantly during 2001–2015,and the increasing rate of the ecological footprint was much faster than that of the water footprint.The coupling degree between the water and ecological footprints was relatively high at the temporal scale and varied at the spatial scale.Among the 14 prefectures and cities examined in Xinjiang,the greater social-economic development(such as in Karamay and Urumqi)was associated with the lower coupling degree between the two footprints.Increases in the water footprint will cause the ecological footprint to increase,such that a 1-unit increase in the consumption of water resources would lead to 2–3 units of ecological degradation.The quantitative relationship between the increases of the water and ecological footprints,together with the intensities of water consumption both in the natural and artificial oases of Tarim River Basin,have approved the fact that the formation and expansion of 1 unit of the artificial oasis would bring about the degradation of 2 units of the natural oasis.These conclusions not only provide a technical basis for sustainable development in Xinjiang,but also offer a theoretical guide and scientific information that could be used in similar arid areas around the world.展开更多
This paper deliberates on the issue of water consumption (evapotranspiration, ET) of three main crops in North China: wheat, corn and bean, which is mainly related to three factors as indicated by the definition of SP...This paper deliberates on the issue of water consumption (evapotranspiration, ET) of three main crops in North China: wheat, corn and bean, which is mainly related to three factors as indicated by the definition of SPAC system. Water consumption was measured on daily and sometimes hourly basis by Lysimeter, which can be adjusted to have the same groundwater level as that in the field, thus the measurement could serve as representative of crop water consumption for adjacent area. The consumption period for three crops has been analyzed and cumulative deviation from the mean of daily evapotranspiration been used to divide the whole growing period into several parts, which are related to but different from the growing periods. The serial correlation coefficients for varied lag time have been calculated to verify that the process of daily ET is not random, and therefore the cumulative daily consumption has been simulated by polynomial method, which gives relative good results. Finally, the effort has been made to investigate the relation of crop yield and water consumption and water use efficiency based on a time series of seven years.展开更多
China has made great progress in the study of socio-economic water cycle. She has completed national water resources appraisement and medium to long-term water supply planning. She has been engaging in study on water-...China has made great progress in the study of socio-economic water cycle. She has completed national water resources appraisement and medium to long-term water supply planning. She has been engaging in study on water-deficient regions in North China and Northwest China for about half a century. For solving water shortage problem in northern China, she has put forward the famous South-to-North Water Transferring Projects, which has been set as one of the four biggest national projects in the Tenth Five-Year-Plan period although there are still debates. For promoting water use efficiency, China has been reforming her water management system, including water right system and water price system. There has already been a case of water right purchase. China has also done a lot of research on the interaction between human activity, water and ecosystem. For meeting the need of sustainability and coordinating water resources development and environmental protection, the study of ecological water requirement became very hot in recent years. There are three focuses of socio-economic water cycle study now in China: water transfer projects from the south to the north, water resources management and ecological water requirement.展开更多
Water resources are critical for the existence and development of oases in endorheic basins.Thus,to enable sustainable development,it is fundamentally important to understand how to allocate and use these resources in...Water resources are critical for the existence and development of oases in endorheic basins.Thus,to enable sustainable development,it is fundamentally important to understand how to allocate and use these resources in a reasonable way.We therefore simulated and analyzed changes in water consumption pattern within the Dunhuang Oasis of China under three scenarios using a system dynamic model that corresponds to different water consumption pattern.This was done to assess the impacts of regional water resource planning(comprehensive planning of the rational use of water resource and protection of ecosystem services in the Dunhuang Basin)on water consumption pattern within the Dunhuang Oasis.The first of these,Scenario 1,is a baseline in which the status quo is maintained,while Scenario 2 incorporates the comprehensive effects of agricultural water-saving irrigation measures with an inter-basin water diversion project,and Scenario 3 focuses on ecological rehabilitation.In the baseline Scenario 1,the total water consumption within the Dunhuang Oasis increased progressively while agricultural water consumption remained extremely high and threatened overall ecological security.In contrast,Scenario 2 would decrease agricultural water consumption by almost 5.30×10^7 m^3 following the implementation of water-saving practices.The additional water allocated from an inter-basin water diversion project would play an important role in alleviating ecological strain on the oasis.Finally,in Scenario 3,the total irrigated land must be decreased to 20.6×10^3 hm^2 by 2025 assuming that water supply for ecosystem restoration would be at least 50%of the total consumption.Although water resource planning plays a very important role in alleviating the ecological water crisis within the oasis,it is necessary to consider the suitable scale of oasis with regard to current water consumption pattern.展开更多
In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring...In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% ifeld capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 μg P g–1 soil). At shooting and lfowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of ifeld water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.展开更多
We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with c...We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with cavitation abrasive water jet was calculated,in order to estimate its efficiency of energy consumption. The particle size distribution and the specific surface area were measured by applying a JEM-200CX transmission electron microscope and an Autosorb-1 automatic surface area analyzer. The study results show that the efficiency of energy consumed in creating new surface areas is as high as 2.92%,or 4.94% with the aid of cavitation in the comminution of mica powder. This efficiency will decrease with an increase in the number of comminutions. After three comminutions,the efficien-cies will become 1.91% and 2.29% for comminution without cavitation and with cavitation,respectively. The abrasive water jet technology is an effective way for comminution of mica powder.展开更多
From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban flesh wat...From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban flesh water consumption was presented based on the theory of urban basic material consumption and the input-output method, which was utilized to calculate urban fresh water consumption of China, and to analyze its structural change and causes. The results show that the total urban flesh water consumption increased 561.7× 10^9m^3, and the proportion to the total national flesh water resources increased by 20 percentage points from 1952 to 2005. The proportion of direct and induced water consumption had been continuously rising, and it increased by 15 and 35 percentage points separately from 1952 to 2005, while the proportion of indirect water consumption decreased by 50 percentage points. Urban indi- rect water consumption was mainly related to urban grain, beef and mutton consumption, and urban induced water consumption had a close relationship with the amount of carbon emission per capita. Finally, some countermeasures were put forward to realize sustainable utilization of urban fresh water resources in China.展开更多
This paper was to study the effect of irrigation and rainfall on water consumption characteristics and yield of high yield highland barley in Tibet river valley.In pots, highland barley-25 of Tibet was used as the tes...This paper was to study the effect of irrigation and rainfall on water consumption characteristics and yield of high yield highland barley in Tibet river valley.In pots, highland barley-25 of Tibet was used as the test material to provide eight water stress treatments: normal water, slight water stress, middle water stress, and severe water stress in two environmental conditions(the whole growth period water stress and the rainwater irrigation after filling stage). Test results indicated that water consumption increased with soil water rise. The maximum consumption of water was at the joining stage and filling stage. And then, the results showed that under rainwater irrigation treatment, the more the soil moisture was, the more the water consumption was. The water stress in whole highland barely growth period reduced biomass and yield. Compared with that of normal water treatment, biomass of slight water stress, middle water stress and severe water stress treatment was decreased by 29.9%, 41.7% and 47.6%, respectively, and yield of the three treatments was decreased by 15.8%, 43.7% and 57.2%, respectively. But rainfall after filling stage was beneficial to biomass and yield of highland barely. Compared with water stress on whole growth period, the biomass and yield of rainfall treatments after the filling stage were increased by 13%, 75.8%, 128.1%, 157.8% and 42.8%, 84%, 201.6%,and 269.5%. The results indicated that biomass and yield of rainwater irrigation after the filling stage had compensatory effect for highland barley growth under water stress, and could improve the water use efficiency. Therefore, properly rainwater usage is beneficial to the increase of yield and water use efficiency of Tibet highland barley-25 under water stress.展开更多
A comprehensive assessing method based on the principle of the gray system theory and gray relational grade analysis was put forward to optimize water consumption forecasting models. The method provides a better accur...A comprehensive assessing method based on the principle of the gray system theory and gray relational grade analysis was put forward to optimize water consumption forecasting models. The method provides a better accuracy for the assessment and the optimal selection of the water consumption forecasting models. The results show that the forecasting model built on this comprehensive assessing method presents better self-adaptability and accuracy in forecasting.展开更多
ABSTRACT: The potential evapotranspiration of specific crops in the Changjiang Delta is calculated by using Pen-man-Monteith method, and an agricultural water consumption model in the area is developed on the basis of...ABSTRACT: The potential evapotranspiration of specific crops in the Changjiang Delta is calculated by using Pen-man-Monteith method, and an agricultural water consumption model in the area is developed on the basis of agricultural production situation. This model has higher precision compared with actual data and can reflect the actual status of agriculture water need. Considering the meteorological, hydrological, economical development situation of the Changjiang Delta, this paper calculates and analyzes the volumes of agricultural water consumption in 2000, 2010, 2030 and 2050 under different climate change conditions and different development speeds of urbanization in future. The result shows agriculture water demand increases with temperature rising and decreases obviously with cultivated area reducing. For the Changjiang Delta, the volume of agricultural water consumption in the future will less than that of present.展开更多
temperature and the diasolved oxygen content affect the oxygen consumption of juveniles of Chinese prawn (Penaeus chinensis), giant tiger prawn (P. monodon) and giant freshwater prawn(Macrobrachium rosenbergii). There...temperature and the diasolved oxygen content affect the oxygen consumption of juveniles of Chinese prawn (Penaeus chinensis), giant tiger prawn (P. monodon) and giant freshwater prawn(Macrobrachium rosenbergii). There is good correlation between the oxygen consumption rate (V, mg/g·h) of the above three prawn species and the water temperature, and dissolved oxygen. In the range of test temperature, V increased with water temperature and diassolved oxygen content. The V of the above three prawn species increased 0.085 mg/g·h, 0. 093 mg/g·h and 0. 08 mg/g·h respectively with each ℃ of rising temperature. The comatose point and stifling point of the juveniles rose obviously at unsuitable temperature.展开更多
Inspired from the anomaly of low pressure in the middle and deep reservoir of the Paleogene in the Jiyang depression, this paper theoritically discusses"waterconsumption"of the principal mineral alteration during th...Inspired from the anomaly of low pressure in the middle and deep reservoir of the Paleogene in the Jiyang depression, this paper theoritically discusses"waterconsumption"of the principal mineral alteration during the diagenetic stage. The preliminary research result shows that "water consumption" of mineral alteration in the diagenetic stage can make formation water greatly decrease. Relevant formations will be in the stage of low pressure without supply of exterior liquid. Pressure differences between the relevant formations and wall rocks make hydrocarbons enter easily to form the effective reservoir.展开更多
This paper established a by sector water consumption and economy analysis integrated model with input–output analysis method. The model can be used to identify the relationships between economic activities and the di...This paper established a by sector water consumption and economy analysis integrated model with input–output analysis method. The model can be used to identify the relationships between economic activities and the direct water consumption, the total water consumption and the intersectoral water transaction for detailed sectors in regional economy. The method is applied to Hai River Basin in China that is characterized by water shortage. The results found that in Hai River Basin, agriculture sector is responsible for 81.2% of the direct total water consumption in the region, but industrial and service sectors account for 53.2% of the indirect total water consumption. To 24 industrial and service sectors, their ratios of indirect water consumption to total water consumption belong to [90%, 99%]. To per unit output, water consumption intensity was highest in agriculture sector 1 at 96.91 m3 per thousand Yuan, the value of 28 industrial and service sectors were smaller than 1. Products of sector 1, sector 24, sector 3, sector 12, sector 6, sector 11 and sector 10 are the main suppliers of indirect water.展开更多
Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1...Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1,1) model, reveals the relationship between restriction and stimulation among variables, and the genetic algorithm has the whole optimal and parallel characteristics. In this paper, the parameter q of MGM(1,n) model was optimized, and a multi-variable grey model (MGM(1,n,q)) was built by using the genetic algorithm. The model was validated by examining the urban water consumption from 1990 to 2003 in Dalian City. The result indicated that the multi-variable grey model (MGM(1,n,q)) based on genetic algorithm was better than MGM(1,n) model, and the MGM(1,n) model was better than MGM(1,1) model.展开更多
文摘The aim of this research project is to assess indirect water consumption,that represents the water consumed in the upstream part of the production life cycle.Estimations are provided for agriculture related companies,as agriculture represents 70%of water consumption on Earth.This consumption varies greatly according to the countries where supply chain is located.The estimation is attempted for 27 European listed companies in sectors relying on agriculture in its supply chain.A data is estimated for 22 companies,showing that indirect water consumption is much more important than direct one.Strategic questions raised through the estimation of indirect water consumption in various subsectors show the interest in this data,which represents the equivalent of Carbon Scope 3 for water issues.
基金Supported by National Key Technology R&D Program of China(2007BAD88B06)~~
文摘[Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different water amounts in sunlight greenhouse of the arid areas in Ningxia,the soil water was measured and the water consumption of crop was calculated.[Result]When irrigation amount was 563 mm,the water consumption as a whole gradually increased with the delay of growth period,reached peak during the thriving stage of fruit setting,and then gradually declined;in each treatment,the daily water consumption increased with the increasing of irrigation amount during each growth period.However,the consumption of soil moisture reduced with the significant increase of irrigation.563 mm of irrigation amount could meet the water requirements of cucumber and began to add water to soil,and water utilization efficiency could reach 33.4 kg/m3.[Conclusion]The research had provided theoretical basis for water management in the production process of greenhouse cucumber.
文摘There are a lot of methods in city water consumption short-term forecasting both inside and outside the country. But among these methods there exist many advantages and shortcomings in model establishing, solving and predicting accuracy, speed, applicability. This article draws lessons from other realm mature methods after many years′ study. It′s systematically studied and compared to predict the water consumption in accuracy, speed, effect and applicability among the time series triangle function method, artificial neural network method, gray system theories method, wavelet analytical method.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest of China(201303133-3)Tianjin Science and Technology Plan Project(14ZCDGNC00108)Agricultural Science and Technology Achievements Transformation and Extension Project of Tianjin City(201203030)~~
文摘This study aimed to investigate the effects of different irrigation amounts on water consumption and water use efficiency of celery under the condition of drip irrigation, so as to provide a scientific basis for high-yielding, high-quality and highefficiency cultivation and water-saving irrigation of greenhouse celery. Total five irrigation amounts were designed, 117.5 (T1), 160.0 (T2), 202.5 (T3), 245.0 (T4) and 287.5 (CK) mm/hm2, and the effects of different irrigation amounts on yield, water consumption and water use efficiency of celery were studied by plot experiment. The results showed that at the soil depth of 0-40 cm, the soil water storages of different treatments ranked as T3's〉T4's〉CK's〉T2's〉T1's, and the celery water consumptions ranked as CK's〉T4's〉T3's〉T2's〉T1's. At the same time, the soil water storage in different treatment group declined with the growth of celery, and finally increased at the harvest period. Among different irrigation amounts, the water use effi- ciency and irrigation water use efficiency all ranked as T1's〉T2's〉T3's〉T4's〉CK's. The water consumption of celery was positively related to irrigation amount (P〈 0.01), and was negatively related to water use efficiency (P〈0.01) and irrigation water use efficiency (P〈0.05). When the irrigation amount was below 253 mm/hm2, the celery yield was positively related to irrigation amount (P〈0.01). There was also a positive correlation between celery output and irrigation amount. Compared with those of CK, the benefit of the T4 treatment group was equal, and the water consumption was reduced by 14.78%. In high-efficiency solar greenhouse, the irrigation amount of drip-irrigated celery is recommended as 245 mm/hm2.
基金Supported by Scientific and Technological Development Plan of Shandong Province(2014GNC113001)Open Fund for National Key Laboratory of Crop Biology(2014KF11)
文摘[Objective] This study aimed to investigate the effects of different planting and irrigation patterns on water consumption characteristics and dry matter produc- tion and allocation of winter wheat. [Method] With high-yield winter wheat cultivar Jimai 22 as the experimental material, field experiment was conducted during 2008- 2010. A total of 3 planting patterns were designed, uniform row, wide-narrow row and furrow. Under each planting pattern, total four irrigation patterns were designed, no irrigation (Wo), irrigation at jointing state (Wl), irrigation at jointing and anthesis stages (W2) and irrigation at jointing, anthesis and milking stages (W3), and the irri- gation amount per treatment was all 60 mm. [Result] Under the three planting pat- terns, with the increased irrigation amount, the total water consumption of the exper- imental field increased; the proportion of irrigation in the total water consumption in- creased, and that of soil water consumption in the total water consumption de- creased significantly. Compared with W0 treatment, various irrigation treatments sig- nificantly increased the post-anthesis dry matter accumulation in wheat plants; with the increased irrigation amount, the grain yield under the three planting patterns all increased, while the water use efficiency (WUE) decreased. Under the same irriga- tion conditions, compared with other two planting patterns, furrow planting increased the total water consumption of the experimental field, increased the proportion of soil water consumption in the total water consumption, and improved the WUE and wheat grain yield. [Conclusion] Under the experimental conditions, considering both wheat grain yield and WUE, furrow planting with moderately deficit irrigation at joint- ing and anthesis stages is more suitable for the winter wheat production in North China Plain.
基金the supports from the National Natural Science Foundation of China (31171498 and 31401334)the Project of Technology System in Modern Wheat Industry, Ministry of Agriculture, China (CARS-3-1-19)
文摘Water shortage is a serious issue threatening the sustainable development of agriculture in the North China Plain, with the winter wheat (Triticum aestivum L.) as its largest water-consuming crop. The effects of tillage practices on the water consumption and water use efifciency (WUE) of wheat under high-yield conditions using supplemental irrigation based on testing soil moisture dynamic change were examined in this study. This experiment was conducted from 2007 to 2010, with ifve tillage practice treatments, namely, strip rotary tillage (SR), strip rotary tillage after subsoiling (SRS), rotary tillage (R), rotary tillage after subsoiling (RS), and plowing tillage (P). The results showed that in the SRS and RS treatments the total water and soil water consumptions were 11.81, 25.18%and 12.16, 14.75%higher than those in SR and R treatments, respectively. The lowest ratio of irrigation consumption to total water consumption in the SRS treatment was 18.53 and 21.88%for the 2008-2009 and 2009-2010 growing seasons, respectively. However, the highest percentage of water consumption was found in the SRS treatment from anthesis to maturity. No signiifcant difference was found between the WUE of the lfag leaf at the later iflling stage in the SRS and RS treatments, but the lfag leaf WUE at these stages were higher than those of other treatments. The SRS and RS treatments exhibited the highest grain yield (9 573.76 and 9 507.49 kg ha-1 for 3-yr average) with no signiifcant difference between the two treatments, followed by P, R and SR treatments. But the SRS treatment had the highest WUE. Thus, the 1-yr subsoiling tillage, plus 2 yr of strip rotary planting operation may be an efifcient measure to increase wheat yield and WUE.
基金supported by the National Key Technology Research and Development Program of China(2017YFC0404301,2016YFA0601602)the National Natural Science Foundation of China(51479209,51609260)
文摘In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological footprints can be used to quantitatively evaluate the water consumption of social-economic activities and their influence on the eco-environments.In addition,increase of the water footprint indicates the expansion of artificial oasis,and the influence on the natural oasis could be reflected by the variation of the ecological footprint.This study was conducted to answer a scientific question that what is the quantitative relationship between the expansion of the artificial oasis and the degradation of the natural oasis in the arid environments of Xinjiang,China.Thus,based on the social-economic data,water consumption data and meteorological data during 2001–2015,we calculated the water and ecological footprints to express the human-related pressure exerted on the water resources and arid environments in Xinjiang(including 14 prefectures and cities),and explore the relationship between the water and ecological footprints and its mechanism by using the coupling analysis and Granger causality test.The results show that both the water and ecological footprints of Xinjiang increased significantly during 2001–2015,and the increasing rate of the ecological footprint was much faster than that of the water footprint.The coupling degree between the water and ecological footprints was relatively high at the temporal scale and varied at the spatial scale.Among the 14 prefectures and cities examined in Xinjiang,the greater social-economic development(such as in Karamay and Urumqi)was associated with the lower coupling degree between the two footprints.Increases in the water footprint will cause the ecological footprint to increase,such that a 1-unit increase in the consumption of water resources would lead to 2–3 units of ecological degradation.The quantitative relationship between the increases of the water and ecological footprints,together with the intensities of water consumption both in the natural and artificial oases of Tarim River Basin,have approved the fact that the formation and expansion of 1 unit of the artificial oasis would bring about the degradation of 2 units of the natural oasis.These conclusions not only provide a technical basis for sustainable development in Xinjiang,but also offer a theoretical guide and scientific information that could be used in similar arid areas around the world.
文摘This paper deliberates on the issue of water consumption (evapotranspiration, ET) of three main crops in North China: wheat, corn and bean, which is mainly related to three factors as indicated by the definition of SPAC system. Water consumption was measured on daily and sometimes hourly basis by Lysimeter, which can be adjusted to have the same groundwater level as that in the field, thus the measurement could serve as representative of crop water consumption for adjacent area. The consumption period for three crops has been analyzed and cumulative deviation from the mean of daily evapotranspiration been used to divide the whole growing period into several parts, which are related to but different from the growing periods. The serial correlation coefficients for varied lag time have been calculated to verify that the process of daily ET is not random, and therefore the cumulative daily consumption has been simulated by polynomial method, which gives relative good results. Finally, the effort has been made to investigate the relation of crop yield and water consumption and water use efficiency based on a time series of seven years.
基金Chinese Academy of Sciences,KZCX1-10-03, KZCX2-317, No.IV-9903Institute of Geographic Sciences and Natural Resources Research, CASCXIOG-B00-04 National Basic Research Development Programme,No.1999043602.
文摘China has made great progress in the study of socio-economic water cycle. She has completed national water resources appraisement and medium to long-term water supply planning. She has been engaging in study on water-deficient regions in North China and Northwest China for about half a century. For solving water shortage problem in northern China, she has put forward the famous South-to-North Water Transferring Projects, which has been set as one of the four biggest national projects in the Tenth Five-Year-Plan period although there are still debates. For promoting water use efficiency, China has been reforming her water management system, including water right system and water price system. There has already been a case of water right purchase. China has also done a lot of research on the interaction between human activity, water and ecosystem. For meeting the need of sustainability and coordinating water resources development and environmental protection, the study of ecological water requirement became very hot in recent years. There are three focuses of socio-economic water cycle study now in China: water transfer projects from the south to the north, water resources management and ecological water requirement.
基金supported by the National Nature Science Foundation of China (41701321)the Fundamental Research Funds for the Central Universities (2662015QD031)the 2014 Key Research Support Program of Central Government Higher Education Basic Research Founding (lzujbky-2014-269)
文摘Water resources are critical for the existence and development of oases in endorheic basins.Thus,to enable sustainable development,it is fundamentally important to understand how to allocate and use these resources in a reasonable way.We therefore simulated and analyzed changes in water consumption pattern within the Dunhuang Oasis of China under three scenarios using a system dynamic model that corresponds to different water consumption pattern.This was done to assess the impacts of regional water resource planning(comprehensive planning of the rational use of water resource and protection of ecosystem services in the Dunhuang Basin)on water consumption pattern within the Dunhuang Oasis.The first of these,Scenario 1,is a baseline in which the status quo is maintained,while Scenario 2 incorporates the comprehensive effects of agricultural water-saving irrigation measures with an inter-basin water diversion project,and Scenario 3 focuses on ecological rehabilitation.In the baseline Scenario 1,the total water consumption within the Dunhuang Oasis increased progressively while agricultural water consumption remained extremely high and threatened overall ecological security.In contrast,Scenario 2 would decrease agricultural water consumption by almost 5.30×10^7 m^3 following the implementation of water-saving practices.The additional water allocated from an inter-basin water diversion project would play an important role in alleviating ecological strain on the oasis.Finally,in Scenario 3,the total irrigated land must be decreased to 20.6×10^3 hm^2 by 2025 assuming that water supply for ecosystem restoration would be at least 50%of the total consumption.Although water resource planning plays a very important role in alleviating the ecological water crisis within the oasis,it is necessary to consider the suitable scale of oasis with regard to current water consumption pattern.
基金supported by the National Nature Science Foundation of China (31300328, 31200335, 31470496)the "111" Program from State Administration of Foreign Experts Affairs (SAFEA) & Ministry of Education (MOE), China (2007B051)+1 种基金the Fundamental Research Funds for the Central Universities, China (lzujbky-2012-97, lzujbky-2015-ct02, lzujbky-2016-86)the funding from the State Key Laboratory of Grassland Agro-ecosystem in Lanzhou University, China
文摘In semiarid areas, cereal crops often alocate more biomass to root at the expense of aboveground yield. A pot experiment was conducted to investigate carbon consumption of roots and its impact on grain yield of spring wheat (Triticum aestivum L.) as affected by water and phosphorus (P) supply. A factorial design was used with six treatments namely two water regimes (at 80–75% and 50–45% ifeld capacity (FC)) and three P supply rates (P1=0, P2=44 and P3=109 μg P g–1 soil). At shooting and lfowering stages, root respiration and carbon consumption increased with the elevate of P supply rates, regardless of water conditions, which achieved the minimum and maximum at P1 under 50–45% FC and P3 under 80–75% FC, respectively. However, total aboveground biomass and grain yield were higher at P2 under 80–75% FC; and decreased with high P application (P3). The results indicated that rational or low P supply (80–75% of ifeld water capacity and 44 mg P kg–1 soil) should be recommended to improve grain yield by decreasing root carbon consumption in semiarid areas.
基金The support from both the Research Foundation for Returning Scholars of Chinathe China Postdoctoral Science Foundation
文摘We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with cavitation abrasive water jet was calculated,in order to estimate its efficiency of energy consumption. The particle size distribution and the specific surface area were measured by applying a JEM-200CX transmission electron microscope and an Autosorb-1 automatic surface area analyzer. The study results show that the efficiency of energy consumed in creating new surface areas is as high as 2.92%,or 4.94% with the aid of cavitation in the comminution of mica powder. This efficiency will decrease with an increase in the number of comminutions. After three comminutions,the efficien-cies will become 1.91% and 2.29% for comminution without cavitation and with cavitation,respectively. The abrasive water jet technology is an effective way for comminution of mica powder.
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40535026)
文摘From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban flesh water consumption was presented based on the theory of urban basic material consumption and the input-output method, which was utilized to calculate urban fresh water consumption of China, and to analyze its structural change and causes. The results show that the total urban flesh water consumption increased 561.7× 10^9m^3, and the proportion to the total national flesh water resources increased by 20 percentage points from 1952 to 2005. The proportion of direct and induced water consumption had been continuously rising, and it increased by 15 and 35 percentage points separately from 1952 to 2005, while the proportion of indirect water consumption decreased by 50 percentage points. Urban indi- rect water consumption was mainly related to urban grain, beef and mutton consumption, and urban induced water consumption had a close relationship with the amount of carbon emission per capita. Finally, some countermeasures were put forward to realize sustainable utilization of urban fresh water resources in China.
基金Supported by National Barley and Highland Barley Industry Technology System Program(CARS-05-01A)~~
文摘This paper was to study the effect of irrigation and rainfall on water consumption characteristics and yield of high yield highland barley in Tibet river valley.In pots, highland barley-25 of Tibet was used as the test material to provide eight water stress treatments: normal water, slight water stress, middle water stress, and severe water stress in two environmental conditions(the whole growth period water stress and the rainwater irrigation after filling stage). Test results indicated that water consumption increased with soil water rise. The maximum consumption of water was at the joining stage and filling stage. And then, the results showed that under rainwater irrigation treatment, the more the soil moisture was, the more the water consumption was. The water stress in whole highland barely growth period reduced biomass and yield. Compared with that of normal water treatment, biomass of slight water stress, middle water stress and severe water stress treatment was decreased by 29.9%, 41.7% and 47.6%, respectively, and yield of the three treatments was decreased by 15.8%, 43.7% and 57.2%, respectively. But rainfall after filling stage was beneficial to biomass and yield of highland barely. Compared with water stress on whole growth period, the biomass and yield of rainfall treatments after the filling stage were increased by 13%, 75.8%, 128.1%, 157.8% and 42.8%, 84%, 201.6%,and 269.5%. The results indicated that biomass and yield of rainwater irrigation after the filling stage had compensatory effect for highland barley growth under water stress, and could improve the water use efficiency. Therefore, properly rainwater usage is beneficial to the increase of yield and water use efficiency of Tibet highland barley-25 under water stress.
基金Project(2003BA808A15-2-4) supported by the National Scientific and Technologies Key Task Program
文摘A comprehensive assessing method based on the principle of the gray system theory and gray relational grade analysis was put forward to optimize water consumption forecasting models. The method provides a better accuracy for the assessment and the optimal selection of the water consumption forecasting models. The results show that the forecasting model built on this comprehensive assessing method presents better self-adaptability and accuracy in forecasting.
基金Under the auspices of the Doctorate Foundation Projects of China Education Committee(No.98028432).
文摘ABSTRACT: The potential evapotranspiration of specific crops in the Changjiang Delta is calculated by using Pen-man-Monteith method, and an agricultural water consumption model in the area is developed on the basis of agricultural production situation. This model has higher precision compared with actual data and can reflect the actual status of agriculture water need. Considering the meteorological, hydrological, economical development situation of the Changjiang Delta, this paper calculates and analyzes the volumes of agricultural water consumption in 2000, 2010, 2030 and 2050 under different climate change conditions and different development speeds of urbanization in future. The result shows agriculture water demand increases with temperature rising and decreases obviously with cultivated area reducing. For the Changjiang Delta, the volume of agricultural water consumption in the future will less than that of present.
文摘temperature and the diasolved oxygen content affect the oxygen consumption of juveniles of Chinese prawn (Penaeus chinensis), giant tiger prawn (P. monodon) and giant freshwater prawn(Macrobrachium rosenbergii). There is good correlation between the oxygen consumption rate (V, mg/g·h) of the above three prawn species and the water temperature, and dissolved oxygen. In the range of test temperature, V increased with water temperature and diassolved oxygen content. The V of the above three prawn species increased 0.085 mg/g·h, 0. 093 mg/g·h and 0. 08 mg/g·h respectively with each ℃ of rising temperature. The comatose point and stifling point of the juveniles rose obviously at unsuitable temperature.
文摘Inspired from the anomaly of low pressure in the middle and deep reservoir of the Paleogene in the Jiyang depression, this paper theoritically discusses"waterconsumption"of the principal mineral alteration during the diagenetic stage. The preliminary research result shows that "water consumption" of mineral alteration in the diagenetic stage can make formation water greatly decrease. Relevant formations will be in the stage of low pressure without supply of exterior liquid. Pressure differences between the relevant formations and wall rocks make hydrocarbons enter easily to form the effective reservoir.
文摘This paper established a by sector water consumption and economy analysis integrated model with input–output analysis method. The model can be used to identify the relationships between economic activities and the direct water consumption, the total water consumption and the intersectoral water transaction for detailed sectors in regional economy. The method is applied to Hai River Basin in China that is characterized by water shortage. The results found that in Hai River Basin, agriculture sector is responsible for 81.2% of the direct total water consumption in the region, but industrial and service sectors account for 53.2% of the indirect total water consumption. To 24 industrial and service sectors, their ratios of indirect water consumption to total water consumption belong to [90%, 99%]. To per unit output, water consumption intensity was highest in agriculture sector 1 at 96.91 m3 per thousand Yuan, the value of 28 industrial and service sectors were smaller than 1. Products of sector 1, sector 24, sector 3, sector 12, sector 6, sector 11 and sector 10 are the main suppliers of indirect water.
文摘Urban water consumption has some characteristics of grey because it is influenced by economy, population, standard of living and so on. The multi-variable grey model (MGM(1,n)), as the expansion and complement of GM(1,1) model, reveals the relationship between restriction and stimulation among variables, and the genetic algorithm has the whole optimal and parallel characteristics. In this paper, the parameter q of MGM(1,n) model was optimized, and a multi-variable grey model (MGM(1,n,q)) was built by using the genetic algorithm. The model was validated by examining the urban water consumption from 1990 to 2003 in Dalian City. The result indicated that the multi-variable grey model (MGM(1,n,q)) based on genetic algorithm was better than MGM(1,n) model, and the MGM(1,n) model was better than MGM(1,1) model.